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Abstract—We propose a class of binary queue length infor-
mation based max-weight scheduling algorithms for wireless
networks. In these algorithms, the scheduler, in addition to
channel states, only needs to know when a link’s queue length
crosses a prescribed threshold. We show that these algorithms
are throughput optimal. Further, we incorporate time-since-last-
service (TSLS) information to improve delay and service regu-
larity of the scheduling algorithms while ensuring throughput
optimality. We also perform simulation to illustrate throughput,
delay and service regularity performance of the proposed algo-
rithms.

I. INTRODUCTION

In the recent past, there has been increasing deployment
of Internet of Things (IoT), bringing in huge number of
traffic generating devices meant to communicate over a shared
wireless medium. Enormous number of IoT devices and broad-
cast nature of wireless channel require careful management
of interference among simultaneous transmissions, an oper-
ation commonly referred to as scheduling. The scheduling
algorithms, besides stability of networks, should also address
nodes’ quality-of-service (QoS) needs, e.g., delay, inter-service
times etc. Further, IoT devices are typically spectrum and
energy limited. Hence, the generating good schedules should
not require excessive communication.

There has been extensive work on queue-length based
wireless scheduling protocols which are shown to optimize the
throughput performance of wireless networks. Landmark work
of Tassiulas and Ephremides [1] characterized the capacity
region of the networks and also showed that a Queue length
based max-weight scheduling algorithm, referred to as Max-Q
here, renders node queues stable for any arrival rates for which
any other scheduling strategy can keep them stable. However,
Max-Q requires each device’s medium access control (MAC)
module to know its queue length (amount of backlogged data)
and also to communicate this to a scheduler in each slot. While
the former violates the basic proposition of layered network
architecture, the latter entails substantial bandwidth and energy
costs. In heterogeneous networks where IoT nodes with sparse
traffic share wireless medium with other nodes generating
heavy traffic, Max-Q can also lead to poor delay and service
regularity performance for the former ones because it favours
links with larger queue lengths.

We propose a throughput optimal max-weight scheduling
algorithm, Max-W, in which the MAC only needs to inform

the scheduler whenever the data queue crosses a thresh-
old (possibly 0). A links’s weight in any slot, which is a
function of the time for which the queue length has been
above this threshold (e.g., has been nonempty), is then known
to the scheduler. So, these algorithms eliminate cross layer
iteration and also economize on the communication overhead.
Expectedly, the delay performance of Max-W is inferior to that
of Max-Q. We next propose a variant, Max-WT, where link
weights are augmented with Time-since-last-service (TSLS)
counters. This algorithm not only promotes service regularity
but also improves the original algorithm’s delay performance.

The rest of this paper is organized as follows. We present
related work and a summary of our contribution in Sec-
tions I-A and I-B, respectively. We describe the system model
in Section II. We introduce and analyse the binary queue length
based scheduling algorithms in Section III. In Section IV,
we study another class of algorithms guaranteeing service
regularity. We present the numerical results in Section V. We
conclude with a mention of future directions in Section VI.

A. Related Work

Eryilmaz et al [2] generalized Max-Q to allow link weights
to be certain functions of queue lengths or waiting times of
the head-of-the-line (HoL) packets in the queues. They also
showed that periodic or infrequent updates with exact queue
length information (e.g., whenever the absolute difference with
respect to the last reported value exceeds a threshold) suffice
to achieve throughput optimality. Neely [3] combined queue
length and HoL packet delay to ensure deterministic worst-
case delay guarantees and to yield a throughput utility that
differs from the optimal value by an amount that is inversely
proportional to the delay guarantee. Ji et al [4] studied a
HoL packet delay based back-pressure algorithm for multi-hop
wireless networks. Ghaderi et al [5] proposed a MAC-layer
queue length based maxweight scheduling algorithm address-
ing the cross layer interaction issue mentioned earlier. The
optimality claims of queue length based algorithms hold under
the assumption of a fixed network topology with each node
having a stationary packet arrival process. Ven et al [6] showed
that Max-Q suffers from starvation and last-packet problems
and is not throughput optimal in presence of nonpersistent
nodes. The HoL packet delay based algorithms do not have
have this problem. Vargaftik et al [7] proposed a starvation
free back-pressure algorithm that ensures repeated evacuation



of all network queues. He et al [8] defined age of information
at a node as the elapsed time since the most recently delivered
update was generated and proposed an algorithm aimed at
minimizing the overall information age.

Several recent works have studied throughput performance
for flow level dynamics where fixed number of users with
stationary packet arrivals are replaced by stationary arrival of
finite-sized (or, short-lived) flows which leave the network
after completing service. Sadiq and Veciana [9] took ages
of files as weights and showed throughput optimality of the
corresponding max-weight scheduling algorithm. Li et al [10]
showed that the age based scheduling algorithm is optimal also
when persistent and dynamic flows coexist. Chen et al [11]
considered head-of-the-line access delay (which equals TSLS)
of a flow as its weight but showed throughput optimality only
under certain constraints on the transmission rates.

Li et al [12] used a linear combination of queue lengths and
TSLS counters as link weights in order to design a scheduling
algorithm aimed at reducing the variance of inter-service
times. They showed that the proposed algorithm is throughput
optimal and also guarantees service regularity. Recently, Li
et al [13] extended this work for a flow level dynamics and
established throughput optimality of an algorithm that uses
only TSLS values to set link weights.

Link weights in Max-W are similar to ages of finite-
sized flows (or, ages of HoL files of persistent flows) in [9],
[10], [13]. However, note that ages in flow based models
linearly grow before being irrelevant when the flows (or,
files) complete service. On the other hand, a link weight in
our model grows as long as the queue length is above a
threshold, and reduces to 0 when the queue length is less
than the threshold, i.e., the weights exhibit saw tooth patterns.
We thus need more constraints on weight functions in our
scheduling algorithm than in [9], [10]. Further, the notion of
TSLS in our work differs from that in [12] in that we do not
increment TSLS counters when the respective queue lengths
are below a threshold,(it is the same threshold as mentioned
above). The two notions coincide in the case of flow level
models (e.g., [11], [13]). Due to this distinction, the proposed
algorithm exhibits different regularity performance than [12].
Finally, the authors in [10] do not consider fading and in [13]
only consider ON-OFF channel fading.

B. Our Contribution

1) We introduce a new class of throughput optimal max-
weight scheduling algorithms which require only binary
queue length information at the scheduler. For determin-
ing link weights we define new counters which exhibit
quite abrupt dynamics. We introduce appropriate weight
function to handle this.

2) We propose new notions of service regularity and time-
since-last-service (TSLS)counter. We provide their rela-
tion. We also provide a lower bound on service regularity.

3) We introduce another class of throughput optimal max-
weight scheduling algorithms that also guarantee service
regularity. These algorithms use a combination of the
above two counters to determine schedules.

II. NETWORK MODEL

We consider a wireless network with L links where each
link represents a transmitter receiver pair that are in commu-
nication range of each other. The network operates using a
slotted time structure with slot boundaries indexed as t =
{1, 2, 3, . . . }. Let random vector A[t] ∈ {0, 1, . . . , Amax}L
represent packet arrivals at slot t.1 Let C[t] ∈ C ,
{0, 1, . . . , Cmax}L denote channel state at slot t; Cl[t] repre-
sents the number of packets that can be transmitted over link
l at slot t. We capture fading by allowing C[t] to be random.
On the other hand, we model wireless interference using a
link-based conflict model wherein a transmission over a link
in a slot is successful if and only if its interfering links are not
transmitting in the same slot. This model can be represented
via a conflict graph whose vertices represent network links
and each link is connected with all its interference links. We
assume that packets arriving at a slot are available for service
only from the next slot onwards. Let S[t] ∈ {0, 1}L denote
the transmission schedule at slot t where Sl[t] = 1 if link l is
scheduled in slot t and 0 otherwise. Let Ω be the collection
of all possible schedules. Examples of our model include

(i) Cellular downlink (or uplink) with a common fading
channel. Here only feasible schedules are singletons or
the empty set.

(ii) Interference limited ad hoc networks. Here Cl[t] = 1 for
all l, t.

We assume that both A[t] and C[t] are i.i.d. across slots
with arrival rates E(A[t]) = λ and P[C[t] = c] = πc for all
c ∈ C. Let Q[t] ∈ ZL denote queue lengths at slot t and Q[t−]
denote queue lengths prior to adding the arrivals at slot t− 1.
These processes evolve as

Ql[(t+ 1)−] = (Ql[t]− Cl[t]Sl[t])+,

Ql[t+ 1] = (Ql[t]− Cl[t]Sl[t])+ +Al[t]. (1)

We say that the network is stable if its state evolution is
Markov chain,call the system stable if the underlying Markov
Chain, is positive recurrent. In this it means Q[t] being positive
recurrent. The capacity region of a network is defined to be the
set of arrival rates for which there exist scheduling algorithms
that render the queues stable.

It is well known that our network has capacity region [1],

Λ , {λ : λl =
∑
c∈C

πc
∑
S∈Ω

θc,sclSl,∀l = 1, 2, . . . L,

for some (θc,S)c∈C,S∈Ω with
∑
S∈Ω

θc,S = 1,∀c} (2)

Finally, we call a scheduling algorithm throughput optimal
if it stabilizes the network queues for any arrival λ such that
(1 + ε)λ ∈ Λ for some ε > 0.

A. Service Regularity
Service regularity is a notion of fairness that refers to vari-

ation of inter-service times at links. The scheduling algorithm
should fairly treat the traffic injected into the MAC layer
queues. With this perspective, inter-service time for a link

1We refer to the duration [t, t+ 1) as slot t.



should exclude the slots at which the MAC layer queue at this
link is below the threshold. So our notion of service regularity
is different from [12] where inter-service time calculation does
not take into account the queue states. We now formally define
our notion of service regularity. Let Bl,m,m = 1, 2, . . . ,
denote the slot at which mth service of link l begins. Let
τl,m denote the earliest slot as seen at Bl,m+1 since when l’s
queue length has been greater than or equal to Cmax. More
precisely, τl,m = min{t ≤ Bl,m+1 : Ql[t−] ≥ Cmax}. We
then define

Il,m , Bl,m −max{Bl,m−1, τl,m−1}

to be the mth inter-service time at l. Let us assume that the
network is stable and, for each l, Il,m converge to a random
variable Īl. Motivated by the discussion in [12], we define
a normalized second moment of Īl, E[Ī2

l ]/E[Īl]
2, to be a

measure of service regularity at link l.
In the following sections, we present a class of scheduling

algorithms which ensure throughput optimality and service
regularity. Throughout we assume that the scheduler knows
instantaneous channel states.

III. BINARY QUEUE LENGTH INFORMATION BASED
SCHEDULING

We propose a class of maxweight scheduling algorithms in
which link weights, are updated only on the basis of queue
lengths being greater or smaller than Cmax. More precisely,
the scheduler maintains a counter Wl(t) for each link l,
which measures the time which l’s queue length has been
Cmax or above. The scheduler uses f(Wl(t)), l = 1, . . . , L as
link weights - different algorithms in the proposed class are
distinguished by the “weight functions” f that they use. The
weight function is chosen from the following set:

F =
{
f : R+ → R+ such that (i) f(0) = 0,

(ii) f is concave, differentiable and increasing,

(iii) ∃M <∞ such that xf ′(x) < M, ∀x.
}

F includes f(x) = (log(1+x))θ for some 0 < θ ≤ 1, f(x) =

log log(e + x) and f(x) = log(1+x)
log(e+log(1+x)) . Several earlier

works have also proposed classes of weight functions for
designing scheduling policies. The authors in [2], [10] allow a
larger class of functions including f(x) = x. Note that Wl(t)
for a link l resets to 0 whenever Ql[t−] drops below Cmax, no
matter how large its previous value was. The abrupt dynamics
of these counters fundamentally differs from that of queue-
lengths which renders many weight functions unusable in our
context. In [13], the authors have prescribed the class G of
functions f : R+ → R+ with the following properties.

1) f(0) = 0,
2) f is concave, differential and increasing,
3) for any k ≥ 1, b ≥ 0,∃c < ∞ such that f(kx + b) ≤

f(x) + c,∀x.
We make the following claim.

Lemma 3.1: F = G
Proof: See Appendix A.

Having fixed an f ∈ F , the algorithm works as follows at
each slot.

Algorithm 1 Max-W
1. A link l informs the scheduler if Ql[t−] has reached Cmax

from below or Cmax − 1 from above.
2. The scheduler updates the counters Wl(t) as

Wl(t+ 1) = (Wl[t] + 1)1{Ql[(t+1)−]≥Cmax},∀l (3)

3. The scheduler chooses a S(W )[t] satisfying

S(W )[t] ∈ argmax
S∈Ω

L∑
l=1

f(Wl[t])Cl[t]Sl[t]

Remarks 3.1: 1) Let us note that MAC layer queues are
typically larger than Cmax. Assume that the transport layer
persistently sends packets to the MAC layer until total backlog
is served. Then the MAC layer can learn whether the backlog
is less than Cmax by just observing it own queue. Note that
Cmax in (3) can be replaced with any threshold greater than
Cmax.
2) Observe that the links do not need to communicate to the
scheduler in every slot for W (t) updates.
3) Also observe that a link l is served at slot t (i.e., Sl[t] = 1)
only if Ql[t] ≥ Cmax. So queue-length evolution follows

Ql[t+ 1] = Ql[t]− Cl[t]S(W )
l [t] +Al[t]. (4)

We next show that the proposed algorithms are throughput
optimal.

Theorem 3.1: Max-W is throughput optimal, i.e., under
Max-W, for all λ such that (1 + ε)λ ∈ Λ for some ε > 0,
the Markov chian (Q[t],W [t]) is positive recurrent. Also,

lim sup
K→∞

1

K

K−1∑
t=1

L∑
l=1

E(f(Ql[t])) <∞.

Proof: Consider a Lyapunov function

V (W [t], Q[t]) =

L∑
l=1

f(Wl[t])Ql[t]

Note that
L∑
l=1

f(Wl[t+ 1])Ql[t+ 1]

(a)
=

L∑
l=1

f(Wl[t+ 1])(Ql[t]− S(W )
l [t]Cl[t] +Al[t])

(b)

≤
L∑
l=1

f(Wl[t] + 1)(Ql[t]− S(W )
l [t]Cl[t] +Al[t])

(c)

≤
L∑
l=1

(f(Wl[t]) + f
′
(Wl[t]))(Ql[t]− S(W )

l [t]Cl[t]

+Al[t]),



where (a), (b) follow from (4) and (3) respectively, and (c)
follows from concavity of f . The drift of the Lyapunov
function

∆V [t]

, V (W [t+ 1], Q[t+ 1])− V (W [t], Q[t])

=

L∑
l=1

f(Wl[t+ 1])Ql[t+ 1]−
L∑
l=1

f(Wl[t])Ql[t]

≤
l=L∑
l=1

f(Wl[t])(Al[t]− S(W )
l [t]Cl[t]) +

l=L∑
l=1

f
′
(Wl[t])Ql[t]

+

l=L∑
l=1

f
′
(Wl[t])(Al[t]− S(W )

l [t]Cl[t])

(d)

≤
l=L∑
l=1

f(Wl[t])(Al[t]− S(W )
l [t]Cl[t])

+

l=L∑
l=1

f
′
(Wl[t])Amax(Wl[t] + Cmax) +

l=L∑
l=1

f
′
(Wl[t])Amax

(e)

≤
l=L∑
l=1

f(Wl[t])(Al[t]− S(W )
l [t]Cl[t])

+ Lf
′
(0)Amax(Cmax + 1) +

l=L∑
l=1

Amaxf
′
(Wl[t])Wl[t]

≤
l=L∑
l=1

f(Wl[t])(Al[t]− S(W )
l [t]Cl[t]) +B, (5)

where B = Lf
′
(0)Amax(Cmax + 1) + AmaxML. Here (d)

follows from Ql[t] ≤ Amax(Wl[t] + Cmax) and Al[t] −
S

(W )
l [t]Cl[t] ≤ Amax, (e) follows from f

′
(Wl[t]) ≤ f

′
(0),

and (e) follows from xf
′
(x) ≤M . So, the conditional drift,

E(∆V [t]|W [t], Q[t])

≤
L∑
l=1

E(f(Wl[t])(Al[t]− S(W )
l [t]Cl[t])|W [t]) +B

=

L∑
l=1

λlf(Wl[t])−
L∑
l=1

E(f(Wl[t])(S
(W )
l [t]Cl[t])|W [t]) +B.

(6)

For any λ, such that (1 + ε)λ ∈ Λ for some ε > 0,

λl ≤
∑
c

πc
∑
S

θ(c, S)clSl − ε,∀l. (7)

Hence, we have
L∑
l=1

(λl + ε)f(Wl[t])

≤
∑
c

πc
∑
S

θ(c, S)

L∑
l=1

f(Wl[t])clSl

≤
∑
c

πc
∑
S

θ(c, S)

L∑
l=1

f(Wl[t])cl[t]S
(W )
l [t]

=E

[
L∑
l=1

f(Wl[t])Cl[t]S
(W )
l [t]|Wl[t]

]
, (8)

where the second inequality follows from definition of Max-
W. By substituting (8) in (6), we have

E(∆V [t]|W [t], Q[t]) ≤ −ε
L∑
l=1

λlf(Wl[t]) +B.

By summing above inequality over t = 1, 2, . . .K and taking
expectation we have

lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

λlE[f(Wl[t])] ≤
B

ε
. (9)

Since Ql[t] ≤ Amax(Wl[t] + Cmax) and f ∈ G (see
Lemma 3.1), there exists a D > 0 such that

f(Ql[t]) ≤ f(AmaxWl[t] +AmaxCmax)

≤ f(Wl[t]) +D. (10)

So we can write,

lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

λlE[f(Ql[t])]

≤ lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

λlE[f(Wl[t]) +D]

≤ B

ε
+D

L∑
l=1

λl <∞. (11)

Inequalities (9) and (11) imply that the Markov
chain (Q[t],W [t]) is positive recurrent [14].

IV. SCHEDULING FOR SERVICE REGULARITY

Our approach in this section is motivated by [12]. As in [12],
we introduce another set of counters, T [t] ∈ (Z+)L, referred
to as times since last service; Tl[t] denotes the number of slots
for which l’s queue length has been greater than or equal to
the threshold,Cmax and not served. Formally, it evolves as

Tl[t+1] = (Tl[t]+1)1{Cl[t]Sl[t]=0}1{Ql[(t+1)−]≥Cmax}. (12)

Though our notions of service regularity and TSLS are differ-
ent from [12], these two also share same relation as in [12,
Lemma 1]. We state it below. Its proof is exactly same as
in [12].

Lemma 4.1: If the sequences (Il,m, 1 ≤ l ≤ L) and T [t]
converge to random vectors Ī and T̄ , respectively, then

E[T̄l] =
1

2

(
E[Ī2

l ]− E[Īl]

E[Īl]

)
. (13)

In the following, we use an affine function of E[T̄l] as a
measure of service regularity.

We first illustrate delay and regularity performances of
Max-Q and Max-W algorithms via simulation. We consider
a cellular downlink with 8 links. We consider Bernoulli
arrivals with λl =

1

(1.9)(1 + l)
, l = 1, . . . , 8 and assume no

channel fading. We show links’ delays and service regularity



in Figure IV. We see that Max-W yields much better delays
for links with smaller arrival rates and also provides much
equitable regularity performance.
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Fig. 1. Delay and Regularity performance of Max-Q and Max-W.

However, we find that regularity performance of all the
links can be further improved (see the service regularity under
the Max-WT in Figure 6). We should thus incorporate TSLS
information in the scheduling decisions. The TSLS counter
has direct impact on service regularity; smaller TSLS value
imply more regular service.

We next show via an example that a maxweight scheduling
algorithm using only TSLS as weights, i.e., choosing schedules
as

S[t] ∈ argmax
S∈Ω

f(Tl[t])Cl[t]Sl[t], (14)

is not throughput optimal. Let us consider a cellular downlink
with 2 users (or, links). Let C1[t] and C2[t] be independent and
identically distributed (in addition to being i.i.d across slots)
Bernoulli random variables with π1 = π0 = 0.5. The capacity
region of this network is{

λ ∈ (R+)2 : λ1 < 0.5, λ2 < 0.5 and λ1 + λ2 < 0.75
}

Now consider an arrival rate λ such that λ1 and λ2 are very
close to (but smaller than) 0.5 and 0.25, respectively. Such
a λ is clearly within the capacity region. Also, in view of
E(Cl[t]) = 0.5, for stability, the first link should be served at
almost every slot when C1[t] = 1. However, T1[t+ 1] is reset
to 0 after every t when link 1 is served. Hence, if C[t] = (1, 1)
but Q2[t+1] > 0, the TSLS based algorithm will not schedule
link 1. Since probability of this event is strictly positive, the
above algorithm clearly cannot drive the network to stability.

A. Scheduling Algorithm Guaranteeing Regular Service

From the above discussion we find that we need to carefully
balance the weights of W and T parameters to come up with
algorithms that are throughput optimal and also give good
service regularity performance. We propose the another class
of scheduling algorithms parameterized by f ∈ F and control
parameters αl > 0, βl ≥ 0, l = 1, . . . , L and γ ≥ 0.

The algorithm works as follows at each slot.
Notice that, for T [t] updates, the links need to inform

the scheduler when their queue lengths cross the threshold,
i.e, Cmax from above or below. The parameters αl and

Algorithm 2 Max-WT
1. A link l informs the scheduler if Ql[t−] has reached Cmax

from below or Cmax − 1 from above.
2. The scheduler updates Wl(t) and Tl(t) as in (3) and (12),

respectively.
3. The scheduler chooses a S∗[t] satisfying

S∗[t] ∈ argmax
S∈Ω

L∑
l=1

(αlf(Wl[t]) + γβlTl[t])Cl[t]Sl[t].

βl, l = 1, . . . , L, in Max-WT can be tuned to control various
performance metrics, e.g., delay and service regularity, of
different links. Setting γ = 0 reduces Max-WT to Max-W.

Theorem 4.1: Max-WT is throughput optimal, i.e., under
Max-WT, Markov chain (Q[t],W [t], T [t]) is positive recurrent
for all arrival rates λ such that (1 + ε)λ ∈ Λ for some ε > 0.
Also,

lim sup
K→∞

1

K

K−1∑
t=0

L∑
l=1

αlE(f(Wl[t])) ≤
B(α, β, γ)

ε
.

where B(α, β, γ) =
∑L
l=1 αl(MAmax + f

′
(0)Amax(Cmax +

1)) + γCmax

L∑
l=1

βl.

Proof: See Appendix B.

B. Service Regularity of Max-WT
We first state a lower bound on service regularity per-

formance of any algorithm that renders the Markov chain
(Q[t],W [t], T [t]) stable. Let (Q̄, W̄, T̄ ) be random vectors
having same distribution as (Q[t],W [t], T [t]) in steady state.
We assume that second momemnt of T̄ is bounded. Let us also
introduce a random vector C̄ having same distribution as C[t]
and define a random set H̄ , {l : C̄lS̄l > 0 or Q̄l = 0}. The
following lower bound holds for all the candidate algorithms.
This bound is similar to [12, Proposition 1], and is obtained
following similar arguments.

L∑
l=1

βlλlE(T̄l) ≥
1

2

( ∑L
l=1 βlλl

E
∑
l∈H̄ βlλl

− 1

)
We now provide an upper bound on the service regularity

under Max-WT. Here, (Q̄, W̄, T̄ ) represent steady state random
vectors under Max-WT.

Theorem 4.2: Under Max-WT, for any λ such that (1 +
ε)λ ∈ Ω for some ε > 0, we have

L∑
l=1

βlλlE(T̄l) ≤
Cmax

1 + ε

 L∑
l=1

βl − E

∑
l∈H̄

βl


+

1

γ(1 + ε)
B (15)

where B = Lf
′
(0)Amax(Cmax + 1) +AmaxML.

Proof: We omit the proof for brevity. It is along the lines
of the proof of [12, Proposition 4] though we use a different
Lyapunov function.



Note that, as γ goes to infinity, the upper bound reduces to
the first term in the right hand side of (15). For an illustration,
let us consider a cellular downlink with L links. Let βl = 1
and λl = 1

L(1+ε) for each link l. Then, for γ → ∞, the
upper bound on the service regularity under Max-WT is atmost
2E(|H̄|) times the lower bound, where |H̄| is cardinality of
H̄ .

V. SIMULATION RESULTS

In this section, we provide simulation results for Max-
Q, Max-W and Max-WT algorithms and also discuss their
performance. We use f(x) = log(1 + x) throughout. We
consider the following two setups.

1) Cellular downlink with 4 nodes and a ON-OFF fading
channel. We assume that Cl[t] equals c > 0 with
probability 0.8 and 0 with probability 0.2. The capacity
region of this network include{
λ : λ1 = · · · = λ4 = ρ

(
1− (1− p)4

4

)
, 0 ≤ ρ < 1

}
.

2) 4 × 4 grid network with 16 nodes and 24 links. We
assume no channel fading and one-hop interference con-
straints. We take four maximal schedules represented
by S1, S2, S3, S4 ∈ {0, 1}24. We then consider fol-
lowing arrival rates which clearly lie in the capacity
region (see [15] for an elaborate description of this setup).{

λ : λ =
ρ

4

4∑
i=1

Si, 0 ≤ ρ < 1

}
.

ρ in the above sets is referred to as load intensity. In each case,
as ρ → 1, the arrival rates approach a point on the boundary
of the capacity region.

We first demonstrate throughput optimality of the algo-
rithms. For this we consider the cellular downlink setup with
c = 3 and ρ = 0.9. In Figure 2, we show aggregate
queue length evolution for Max-Q, Max-W and Max-WT with
γ = 1, 5. We see that the queues stabilize in each case.
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Fig. 2. Aggregate queue length evolution for the cellular downlink setup

We show mean queue lengths as a function of load intensity
for the cellular and grid network setups in Figures 3 and 4,
respectively. We have again set c = 3 in the cellular setup.

We observe that Max-WT can also yield better delay perfor-
mance than Max-W if the control parameter γ is appropriately
selected.
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Fig. 3. Mean queue length vs load intensity for the cellular downlink setup

0.5 0.6 0.7 0.8 0.9 1
Load Intensity(ρ)

0

1000

2000

3000

4000

5000

6000

M
ea

n
 Q

u
eu

e 
L

en
g

th

Max-W

Max-WT with γ=1

Max-WT with γ=5

Max-Q

Fig. 4. Mean queue length vs load intensity for the grid network setup
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We show tradeoff between mean aggregate queue lengths
and service regularity and between E(

∑
Wl[t]) and service

regularity (see Figure 5). Here, we have considered cellular
downlink with c = 1 and ρ = 0.93. Different points in



the plots correspond to different γs which vary as 2−i, i =
−4,−3, . . . , 4. Expectedly, service regularity improves and
E(
∑
Wl[t]) increases as γ is increased. We also observe

that service regularity is not improving at the expense of
mean queue lengths. Finally, we compare delay and service
regularity performances of Max-W and Max-WT for the same
setup used in Figure IV. We clearly see that Max-WT yields
much better service regularity.
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Fig. 6. Delay and Regularity performance of Max-Q and Max-W.

VI. CONCLUSION

We have proposed two classes of maxweight scheduling
algorithms, Max-W and Max-WT, both using binary queue
length information. Algorithms in both the classes are through-
put optimal (Theorems 3.1 and 4.1) and Max-WT algorithms
also guarantee service regularity (Theorem 4.2).

We would like to further study the regularity performance
of Max-WT algorithms. We would also like to investigate
delay performance of Max-W and Max-WT algorithms. Our
future work also includes designing CSMA-type distributed
versions of the proposed algorithms (similar to QCSMA for
queue length based maxweight [16]). The CSMA algorithms
assume smooth dynamics of the underlying weights (see [15]).
The weights in our algorithms change abruptly. We would
like to explore alternate dynamics suitable for distributed
implementation. .

APPENDIX A
PROOF OF LEMMA 3.1

We first show that G ⊆ F and then that F ⊆ G. These
together prove the claim.

G ⊆ F: Consider a f ∈ G. Invoking the properties of G,
for k = 2, b = 0,∃c <∞ such that

f(2y) ≤ f(y) + c,∀y ≥ 0. (16)

Hence, for any x ≥ 0,

xf(x) = 2
(x

2
f ′(x)

)
≤ 2

(
f(x)− f

(x
2

))
≤ 2c,

where the first inequality follows because f is concave and
increasing, and the second follows from setting y = x/2

in (16). Hence f ∈ F . Since these arguments hold for any
f ∈ F , G ⊆ F .
F ⊆ G: Now consider a f ∈ F . For any k ≥ 1, b ≥ 0

and for all x,

f(kx+ b)− f(x) ≤ f ′(x)((k − 1)x+ b)

≤ (k − 1)M + f ′(0)b,

where the first inequality follows because f is concave and
increasing, and the second because f ′(x) ≤ f ′(0) and
xf ′(x) ≤ M . We observe that any f in F is also in G, and
so F ⊆ G.

APPENDIX B
PROOF OF THEOREM 4.1

The proof is along the lines of proof of [12, Proposition 1].
For improved readability we define Z[t] , (Q[t],W [t], T [t]),
the Markov chain under consideration. Consider the Lyapunov
function

V (Z[t]) ,
L∑
l=1

αlf(Wl[t])Ql[t] + γCmax

L∑
l=1

βlTl[t],

and define ∆V [t] , V (Z[t + 1]) − V (Z[t]), Then, the
conditional expected drift

E(∆V [t]|Z[t])

= E(V (Z[t+ 1])− V (Z[t])|Z[t])

= E

[
L∑
l=1

αl(f(Wl[t+ 1])Ql[t+ 1]− f(Wl[t])Ql[t])|Z[t]

]

+ γCmaxE

[
L∑
l=1

βl(Tl[t+ 1]− Tl[t])|Z[t]

]
(17)

Let H∗[t] , {l : Cl[t]S
∗
l [t]>0 or Ql[t] = 0}. Then

L∑
l=1

βlTl[t+ 1] =
∑

l 6∈H∗[t]

βl(Tl[t] + 1)

≤
L∑
l=1

βlTl[t] +
L∑
l=1

βl −
∑

l∈H∗[t]

βlTl[t] (18)

By substituting (18) in (17), and following similar steps that
we used to obtain (5),

E(∆V [t]|Z[t])

≤
L∑
l=1

αlE(f(Wl[t])(Al[t]− S∗l [t]Cl[t])|Z[t])

− γCmax

∑
l∈H∗

E(βlTl[t]|Z[t])

+ γCmax

L∑
l=1

βl +

L∑
l=1

αl(MAmax + f
′
(0)Amax(Cmax + 1))

=

L∑
l=1

αlλlf(Wl[t])− E(

L∑
l=1

αlf(Wl[t]Cl[t]S
∗
l [t]|Z[t])



− γCmax

∑
l∈H∗

E(βlTl[t]|Z[t]) +B(α, β, γ), (19)

where B(α, β, γ) is as in the statement of the Theorem 4.1. Let
S(W ) ∈ argmaxS∈Ω

∑L
l=1 f(Wl[t])Cl[t]Sl[t] be a schedule

that Max-W would choose. Then, by the definition of Max-
WT,

L∑
l=1

(αlf(Wl[t]) + γβlTl[t])Cl[t]S
∗
l [t]

≥
L∑
l=1

(αlf(Wl[t]) + γβlTl[t])Cl[t]S
(W )
l [t].

So,
L∑
l=1

αlf(Wl[t])Cl[t]S
∗
l [t] ≥

L∑
l=1

αlf(Wl[t])Cl[t]S
(W )
l [t]

− γβlTl[t]Cl[t]S∗l [t]. (20)

By substituting (20) in (19),

E(∆V |Z[t])

≤
L∑
l=1

αlλlf(Wl[t]− E

[
L∑
l=1

αlf(Wl[t]Cl[t]S
(W )
l [t])

]

+ γE

[
L∑
l=1

βlTl[t]Cl[t]S
∗
l [t]|Z[t]

]

− γCmaxE

 ∑
l∈H∗[t]

βlTl[t]|Z[t]

+B(α, β, γ)

≤
L∑
l=1

αlλlf(Wl[t])− E

[
L∑
l=1

αlf(Wl[t]Cl[t]S
(W )
l [t])

]
+B(α, β, γ),

where the last inequality holds because we have

Cmax

E ∑
l∈H∗[t]

βlTl[t]|Z[t]

 ≥ E

[
L∑
l=1

βlTl[t]Cl[t]S
∗
l [t]|Z[t]

]
.

Now, for any λ such that (1 + ε)λ ∈ Λ for some ε > 0,
arguing as in the proof of Theorem 3.1, we can show

lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

αlλlE[f(Wl[t])] ≤
B(α, β, γ)

ε
. (21)

Similar to Max-W, we have Ql[t] ≤ Amax(Wl[t] +Cmax), so
following the arguements that led to (11), we have

lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

αlλlE[f(Ql[t])] ≤
B(α, β, γ)

ε
+D

L∑
l=1

αlλl

<∞ (22)

Finally, since Tl[t] ≤Wl[t], we can also claim

lim sup
K→∞

1

K

K∑
t=1

L∑
l=1

αlλlE[f(Tl[t])] ≤
B(α, β, γ)

ε
. (23)

Inequalities (21), (22) and (23) imply that the Markov chain
(Q[t],W [t], T [t]) is positive recurrent [14].
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