Studies on Current Hysteresis Controllers And Low Order Harmonic Suppression Techniques for IM Drives with Dodecagonal Voltage Space Vectors

> Prof. K. Gopakumar DESE, IISc, Bangalore

Organization

Introduction

- A nearly constant switching frequency CESV based hysteresis controller for an IM drive with single dodecagonal voltage space vectors
- A nearly constant switching frequency CESV based hysteresis controller for an IM drive with multilevel dodecagonal voltage space vectors
- A 5th and 7th order harmonic suppression scheme for open-end winding split-phase IM drive using capacitor-fed inverters
- Conclusion and future scope

Induction Motor Drives

12-sided polygonal space vector diagram

Advantages of Dodecagon

- **\land** Elimination of 6n ± 1,(n=odd) harmonics
- Increased modulation range

Controllers for VSI

- PWM Voltage source Inverters
 - ▲ Voltage controlled PWM VSI
 - ▲ Current controlled PWM VSI

Features of current controlled PWM VSI

- ▲ Simple logic, easily implemented
- **Excellent dynamic response**
- A Inherent short-circuit protection
- ▲ Disadvantages large current ripple in steady-state, switching frequency variation

Current Controlled PWM VSI

- Ramp comparison controller
- Predictive Current controller
- Hysteresis Current Controller (HCC)
- Neural network controller
- Fuzzy logic controller

Hysteresis Current Controlled VSI

- Fixed tolerance band HCC
 - Switching frequency variation in a fundamental cycle & change in motor speed
 - **Non-optimum current ripple**
 - A Harmonic content in load current overheating of machine
- Variable tolerance band HCC
 - Variable hysteresis band for constant switching frequency
 - Adaptive hysteresis band
 - Sinusoidal hysteresis band
 - Disadvantages complex logic, stability problems, limitations in transient performnce

Space Phasor Variable band HCC VSI

- Continuously varying parabolic boundary for Curret Error Space Phasor
 - Selection of proper shape & size of parabolic boundary for CESV
 - ▲ Proper orientation of parabolic boundary along orthogonal X-Y axes
 - Identify current sector
 - ▲ Vector selection to minimize switching

A nearly constant switching frequency CESV based hysteresis controller for an IM drive with single dodecagonal voltage space vectors

Organization

- Power circuit and space-vector diagram
- Analysis of CESV in VC-SVPWM
- Parabolic CESV boundaries for nearly constant switching frequency
- Vector selection logic for proposed controller
- Sector detection logic for proposed controller
- Block diagram of the proposed controller
- Simulation and experimental results
- Conclusion

Power circuit of the proposed inverter

- Open-end winding Induction Motor fed from 2-level inverters from both sides
- Asymmetrical DC link Voltages
- Pole Voltages of Inverter-1 \rightarrow V(A,O), V(B,O), V(C,O)
- Pole Voltages of Inverter-2 \rightarrow V(A',O'), V(B',O'), V(C',O')
- Phase Voltages are differences of respective pole voltages of two inverters

Dodecagonal space vector diagram

Proposed HCC

- Analyse boundary of constant switching frequency VC-SVPWM
- Use boundary of VC-SVPWM to get constant switching frequency in steady state
- Identify sector and switch appropriate vectors

Current Error Space Vector (CESV)

Current Error Space Vector: $\Delta \mathbf{i} = \mathbf{i} - \mathbf{i}^*$ $\Delta i = \Delta i_A + \Delta i_B \ e^{j(2\pi/3)} + \Delta i_C \ e^{j(4\pi/3)}$ $\Delta i = \Delta i_\alpha + j\Delta i_\beta$

Current-Error in space phasor Diagram

Dynamic Equation of Current Error

Space phasor based equivalent circuit of IM in the stationary reference frame with rotor flux as reference vector

 $\overrightarrow{V_k} \approx \overrightarrow{V_s} + \sigma L_s \frac{d\Delta \overrightarrow{i_s}}{dt} \quad \Longrightarrow \quad$

$$\vec{V}_{k} = R_{s}\vec{i_{s}} + \sigma L_{s}\frac{d\vec{i_{s}}}{dt} + \frac{d\vec{\Psi}_{r}}{dt};$$

$$\vec{v}_{k} = R_{s}\vec{i_{s}} + \Delta\vec{i_{s}}$$

$$\vec{v}_{r} = \vec{i_{s}} + \Delta\vec{i_{s}}$$

$$\vec{V}_{k} = R_{s}\left(\vec{i_{s}} + \Delta\vec{i_{s}}\right) + \sigma L_{s}\frac{d\left(\vec{i_{s}} + \Delta\vec{i_{s}}\right)}{dt} + \frac{d\vec{\Psi}_{r}}{dt}$$

$$\vec{V}_{k} = R_{s}\left(\vec{i_{s}} + \Delta\vec{i_{s}}\right) + \sigma L_{s}\frac{d\vec{i_{s}}}{dt} + \frac{d\vec{\Psi}_{r}}{dt}$$

$$taking \ \vec{V}_{s} = R_{s}\vec{i_{s}} + \sigma L_{s}\frac{d\vec{i_{s}}}{dt} + \frac{d\vec{\Psi}_{r}}{dt}$$

$$then \ \vec{V}_{k} = \vec{V}_{s} + R_{s}\Delta\vec{i_{s}} + \sigma L_{s}\frac{d\Delta\vec{i_{s}}}{dt}$$

$$\frac{d\Delta\vec{i_{s}}}{dt} = \frac{\vec{V}_{k} - \vec{V}_{s}}{\sigma L_{s}} = \frac{\Delta V_{(V_{k})}}{\sigma L_{s}}$$

integrating both sides $\Delta i_{(V_k)} = \frac{\Delta V_{(V_k)}}{\sigma L_s} t$

CESV For VC-SVPWM Inverter

From dynamic equation of current error:

$$\Delta i_{(V_k)} = \frac{\Delta V_{(V_k)}}{\sigma L_s} t$$

 In a switching cycle Ts - V1, V2 & V0 vectors are applied for T1,T2 & T0 duration respectively

• The current errors at end of each vector are:

$$\Delta i_{(V_1)} = \frac{\Delta V_{(V_1)}}{\sigma L_s} T_1$$

$$\Delta i_{(V_2)} = \frac{\Delta V_{(V_2)}}{\sigma L_s} T_2$$

$$\Delta i_{(V_0)} = \frac{\Delta V_{(V_0)}}{\sigma L_s} T_0$$

Voltage-error vectors for differnt Vectors

CESV Trajectory of VC-SVPWM inverter

- For each sampled point of Vs in a VC-SVPWM based inverter, CESV trajectory is traced out for vectors V1, V2 & V0
- The corner points of all trajectories in a sector gives the boundary for that sector

CESV Trajectory of VC-SVPWM inverter

CESV Boundaries for 12-sided Inverter Fed Drive

- Current error boundary formed by four unique parabolas
- Parabolic boundaries varies with magnitude of Vs vector
- Characterized by equations:

$$(x-h)^{2} = 4p(y-k) \text{ and } (y-k)^{2} = 4p(x-h)$$

• Four parameters p1,p2,h1,k2 are sufficient to define the parabolic boundary

Variation of Parabola parameters

Variation of parabola parameters p1, p2, h1, k2 for variation in frequency from 0 to 48Hz

Four look-up tables are used for selecting these four boundary parameters

CESV Boundaries For Different Sectors

CESV boundaries for sectors 0,1,2 at 10Hz

- Identical CESV boundaries for different sectors
- Single set of parabolic equations is sufficient
 - transform CESV to an x-y axis passing through center of current sector

Transformation to General Reference Frame

Transform CESV from α – β axis to x-y axis passing through center of current sector - (s)

$$\begin{array}{ll} \Delta i_x = & \Delta i_\alpha \cos(s \times 30^o) + \Delta i_\beta \sin(s \times 30^o) \\ \Delta i_y = & -\Delta i_\alpha \sin(s \times 30^o) + \Delta i_\beta \cos(s \times 30^o) \end{array}$$

Reduces computation complexity

Vector Selection Logic

- Generalized vector selection logic
 - for all sectors
 - for both directions
- ▶ V1 first vector in current sector
- **V**2 second vector in current sector
- V0,V3 zero vectors

J	$ y - x \tan 15 < 0$		$ y - x \tan 15 \ge 0$	
Present Vector	x < 0 & $sign(p1)(y^2 + 4p_1(x + h_1)) < 0$	x > 0 & $sign(p1)(y^2 - 4p_1(x - h_1)) < 0$	y < 0 & $(x^2 + 4p_2(y + k_2)) \ge 0$	y > 0 & $(x^2 - 4p_2(y - k_2)) \ge 0$
V0	V1		V2	V1
V1		V0	V2	
V2		V3		V1
V3	V2		V2	V1

Estimating of Fundamental Stator Voltage

Space phasor based equivalent circuit of IM in the stationary reference frame with rotor flux as reference vector

$$\overrightarrow{V_{k}} = \overrightarrow{V_{s}} + R_{s}\Delta\overrightarrow{i_{s}} + \sigma L_{s}\frac{d\Delta i_{s}}{dt}$$

$$\Rightarrow \overrightarrow{V_{s}} = \overrightarrow{V_{k}} - R_{s}\Delta\overrightarrow{i_{s}} - \sigma L_{s}\frac{d\Delta\overrightarrow{i_{s}}}{dt}$$

$$\Rightarrow V_{s\alpha} = V_{k\alpha} - \Delta i_{s\alpha}R_{s} - \sigma L_{s}\frac{d\Delta i_{s\alpha}}{dt}$$

$$\& V_{s\beta} = V_{k\beta} - \Delta i_{s\beta}R_{s} - \sigma L_{s}\frac{d\Delta i_{s\beta}}{dt}$$

Sector Detection Logic

- Transform $V_{s\alpha}, V_{s\beta}$ to V'_a, V'_b, V'_c $V'_a = 0.6440 \times V_{s\alpha} - 0.1725 \times V_{s\beta}$ $V'_b = -0.1725 \times V_{s\alpha} + 0.6440 \times V_{s\beta}$ $V'_c = -0.4714 \times V_{s\alpha} - 0.4714 \times V_{s\beta}$
- Use Table to decide sector

Condition	Sector	
U' > U' > U'	$V_b^{'} < 0$	sect0
$v_a > v_b > v_c$	$V_{b}^{'}\geq 0$	sect1
$V_{b}^{'} > V_{a}^{'} > V_{c}^{'}$	$V_{a}^{'} \geq 0$	sect2
	$V_{a}^{'} < 0$	sect3
U' > U' > U'	$V_{c}^{'} < 0$	sect4
$v_b > v_c > v_a$	$V_{c}^{'}\geq 0$	sect5
U' > U' > U'	$V_{b}^{'}\geq 0$	sect6
$v_c > v_b > v_a$	$V_{b}^{'} < 0$	sect7
$V_{c}^{'} > V_{a}^{'} > V_{b}^{'}$	$V_{a}^{'} < 0$	sect8
	$V_{a}^{'}\geq 0$	sect9
U' > U' > U'	$V_{c}^{'} \geq 0$	sect10
$v_a > v_c > v_b$	$V_{c}^{'} < 0$	sect11

Block Diagram of the Proposed Controller

Simulation Results - Phase Voltage & Current

10Hz steady state, x-axis 20ms/div

30Hz steady state, x-axis 10ms/div

20Hz steady state, x-axis 10ms/div

40Hz steady state, x-axis 5ms/div

Simulation Results - FFTs

Normalized Harmonic Spectrum (FFT) of phase Voltage

Steady State waveforms @10Hz

a1:Phase Voltage(200V/div), a2:Phase Current(1A/div), a3:Estimated Stator Voltage(100V/Div) and a4:Sector; b1:Inverter1 Pole Voltage A (200V/div), b2: Inverter2 Pole Voltage A' (100V/div), b3:Phase Voltage A-A'(400V/div) and b4:Estimated Stator Voltage(100V/Div) (X-axis 20ms/div)

Steady State waveforms @20Hz

a1:Phase Voltage(200V/div), a2:Phase Current(1A/div), a3:Estimated Stator Voltage(200V/Div) and a4:Sector; b1:Inverter1 Pole Voltage A (200V/div), b2: Inverter2 Pole Voltage A' (100V/div), b3:Phase Voltage A-A'(400V/div) and b4:Estimated Stator Voltage(200V/Div) (X-axis 20ms/div)

Steady State waveforms @30Hz

a1:Phase Voltage(200V/div), a2:Phase Current(1A/div), a3:Estimated Stator Voltage(200V/Div) and a4:Sector; b1:Inverter1 Pole Voltage A (200V/div), b2: Inverter2 Pole Voltage A' (100V/div), b3:Phase Voltage A-A'(400V/div) and b4:Estimated Stator Voltage(200V/Div) (X-axis 10ms/div)

Steady State waveforms @40Hz

a1:Phase Voltage(200V/div), a2:Phase Current(1A/div), a3:Estimated Stator Voltage(200V/Div) and a4:Sector; b1:Inverter1 Pole Voltage A (200V/div), b2: Inverter2 Pole Voltage A' (100V/div), b3:Phase Voltage A-A'(400V/div) and b4:Estimated Stator Voltage(500V/Div) (X-axis 10ms/div)

Current Error Space Phasor

10Hz a)VC-SVPWM b)Proposed Controller

20Hz a)VC-SVPWM b)Proposed Controller

X & Y Axis 0.4A/div

30Hz a)VC-SVPWM b)Proposed Controller

40Hz a)VC-SVPWM b)Proposed Controller

Proposed Hysteresis Controller characteristics when a sudden change in Isq* is applied

@20Hz

@40Hz

1:Phase voltage(200V/div) and 2:Phase current(0.5A/div) (X-axis 5ms/div)

1:Phase Voltage(200V/div) and 2:Phase Current(1A/div) during transition from linear modulation to twelve-step mode (X-axis 50ms/div)

1:Phase Voltage(200V/div), 2:Phase Current(1A/div), 3:Reference Current(1A/Div) and 4:frequency(20Hz/Div) during acceleration from stand still to 20 Hz (X-axis 500ms/div)

1:Phase Voltage(200V/div), 2:Phase Current(1A/div), 3:Reference Current(1A/Div) and 4:frequency(40Hz/Div) during speed reversal from 20Hz to -20Hz (X-axis 1s/div)

Conclusion

- Proposed controller has switching frequency pattern similar to that of VC-SVPWM dodecagonal inverter
- Generalized vector selection logic valid for all sectors and both direction
- All advantages of space phasor based HCC adjacent voltage vector switching, excellent dynamic performance, simple control
- All advantages of dodecagonal voltage space elimination of 6(n±1), (n=odd) harmonics extended linear modulation range

A nearly constant switching frequency CESV based hysteresis controller for an IM drive with multilevel dodecagonal voltage space vectors

Organization

- Power circuit and space-vector diagram
- Analysis of CESV in VC-SVPWM
- Online boundary computation
- Block diagram and flow chart of the proposed controller
- Simulation and experimental results
- Conclusion

Power circuit for multilevel 12-sided polygons

Six-level inverter cascaded with a floating capacitor H-bridge cell

- Capacitor C1, C2, C3 0.5 VDC
- Capacitor C4, C5, C6 0.183 VDC
- Asymmetrical nine-level inverter

Individual Leg Pole Voltages

 Redundant states to charge or discharge used capacitors

Pole		Effect on capacitors when			
Voltage	Method of	current is positive			
Levels	generation	(towards the motor terminal)			
		C1	C4		
0.183VDC	Vc4	No effect	Discharging		
	0.366VDC-Vc4	No effect	Charging		
0.366 VDC	0.366 VDC	No effect	No effect		
0 EVDC	Vc1	Discharging	No effect		
$0.3 \mathrm{VDC}$	VDC-Vc1	Charging	No effect		
0.683VDC	Vc1+Vc4	Discharging	Discharging		
	0.366VDC+Vc1-Vc4	Discharging	Charging		
	VDC-Vc1+Vc4	Charging	Discharging		
	1.366VDC-Vc1-Vc4	Charging	Charging		
0.866WDC	0.366 + Vc1	Discharging	No effect		
0.800 V DC	1.366VDC-Vc1	Charging	No effect		
1VDC	VDC	No effect	No effect		
1.183VDC	VDC+Vc4	No effect	Discharging		
	1.366VDC-Vc4	No effect	Charging		
1.366 VDC	1.366VDC	No effect	No effect		
0	0	No effect	No effect		

Pole Voltages Example 0.683 VDC

 One out of four combinations chosen depending on capacitor voltages

Multilevel dodecagonal Space Vector Diagram

- Voltage vectors lying on dodecagon chosen
- Six 12-sided polygons
- Radius of outermost dodecagon 1.225 VDC
- 72 voltage vectors, 120 triangles

Proposed HCC

- Analyse trajectory of constant switching frequency VC-SVPWM
- Use same trajectory as VC-SVPWM to get constant switching frequency, during steady state operation
- Identify triangle and vectors timings
- Check boundary crossing and switch appropriate vectors

SVPWM CESV Trajectory Analysis

- Ramp up trajectory OABCO
- Ramp down trajectory OADCO
- CESV trajectory of each vector:
 - Starts at end of previous vector's trajectory
 - ▲ Length given by:

$$\Delta \overrightarrow{i_k^*} = \frac{\Delta \overrightarrow{V_k}}{L_{\sigma}} T_k, \qquad k = 0, 1, 2, 3$$

Online Boundary Algorithm

• Shift actual CESV to new origin $\Delta \vec{i_k} - \vec{s_k}$

Check projection along calculated trajectory

▲ Simplifying:

$$(\Delta \overrightarrow{i_k} - \overrightarrow{s_k}) \cdot \Delta \overrightarrow{i_k^*} \ge |\Delta \overrightarrow{i_k^*}|^2$$

$$(\Delta \overrightarrow{i_k} - \overrightarrow{s_k}) \cdot \frac{\Delta \overrightarrow{i_k^*}}{|\Delta \overrightarrow{i_k^*}|} \ge |\Delta \overrightarrow{i_k^*}|$$

Sector Detection Logic

- Estimate V_s from V_k , Δi , R_s and σL_s
- Transform $V_{s\alpha}$, $V_{s\beta}$ to V_a , V_b , V_c
- Use Table to decide sector

Conditio	Sector		
V > V > V	$V_b < 0$	sect0	
$V_a > V_b > V_c$	$V_b \ge 0$	sect1	
$V_{1} > V > V$	$V_a \ge 0$	sect2	
$v_b > v_a > v_c$	$V_a < 0$	sect3	
U > V > V	$V_c < 0$	sect4	
$V_b > V_c > V_a$	$V_c \ge 0$	sect5	
V > V > V	$V_b \ge 0$	sect6	
$ \mathbf{v}_c - \mathbf{v}_b - \mathbf{v}_a $	$V_b < 0$	sect7	
V > V > V	$V_a < 0$	sect8	
$V_c > V_a > V_b$	$V_a \ge 0$	sect9	
V > V > V	$V_c \ge 0$	sect10	
$v_a > v_c > v_b$	$V_c < 0$	sect11	

Timing Caculation - 0° Dodecagonal Sector

- Volts-sec balance of vectors in a sector 's' $T_s \vec{V}_s = T_1 V_{D0} \angle (s30^\circ) + T_2 V_{D0} \angle (s+1)30^\circ$
- Solving for T_1 and T_2

$$\begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \frac{2T_s}{V_{D0}} \begin{bmatrix} \sin\left((s+1)\,30^\circ\right) & -\cos\left((s+1)\,30^\circ\right) \\ -\sin\left(s30^\circ\right) & \cos\left(s30^\circ\right) \end{bmatrix} \begin{bmatrix} V_\alpha \\ V_\beta \end{bmatrix}$$

Simplifying in terms of sampled reference value

even sectors:

 α

odd sectors:

$$\begin{bmatrix} T_{1D0} \\ T_{2D0} \end{bmatrix} = \frac{T_s}{|V_{D0}|} \begin{bmatrix} 3V_{minAbs} \\ \sqrt{3}(V_{midAbs} - V_{minAbs}) \end{bmatrix}$$
$$\begin{bmatrix} T_{1D0} \\ T_{2D0} \end{bmatrix} = \frac{T_s}{|V_{D0}|} \begin{bmatrix} \sqrt{3}(V_{midAbs} - V_{minAbs}) \\ 3V_{minAbs} \end{bmatrix}$$

Timing Caculation - 15° Dodecagonal Sector

Rotate both vectors by 15°

$$\begin{bmatrix} T_{1D15} \\ T_{2D15} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & 0.5176 \\ -0.5176 & 0.5176 \end{bmatrix} \begin{bmatrix} T_{1D0} \\ T_{2D0} \end{bmatrix}$$

Timing Caculation - General Triangle

• Solving volts-sec balance equation in terms of V_1 , V_2 , V'_1 , V'_2 , V_p , T_1 , T_2

$$T_{p}^{'} = \frac{|V_{1}|(T_{1} + T_{2}) - |V_{2}^{'}|T_{s}}{|V_{p}^{'}| - |V_{2}^{'}|\cos(15)}\cos(15)$$

$$T_{1}^{'} = \frac{2|V_{1}|T_{1}\cos(15) - |V_{p}^{'}|T_{p}^{'}}{2|V_{1}^{'}|\cos(15)} \qquad \qquad T_{2}^{'} = \frac{2|V_{2}|T_{2}\cos(15) - |V_{p}^{'}|T_{p}^{'}}{2|V_{2}^{'}|\cos(15)}$$

Timing Calculation - Summary

- Compute three phase reference voltages (V_a, V_b, V_c) from V_s
- Find 12-sided sector (30° sector) and its active vector dwell times
- ► Find sub-sector (15° sector) and its active vector dwell times
- Find vector dwell times of all the triangular regions inside identified sub-sector
- Find triangular region with all positive vector dwell times
- Map identified triangular region to a triangle in the space-vector diagram

Block Diagram of the Proposed Controller

$DSP \rightarrow TI \ TMS320LF2812A$

Flow Chart of the Proposed Controller

Simulation Results - Phase Voltage & Current

10 Hz steady state, Ia (0.5 A/div), Va (50 V/div), X-axis 20 ms/div

20 Hz steady state, Ia (0.5 A/div), Va (50 V/div), X-axis 10 ms/div

30 Hz steady state, Ia (0.5 A/div), Va (50 V/div), X-axis 10 ms/div

Current Error Space Phasor

10Hz, sect 0 (X & Y Axes 20 mA/div)

10Hz, sect 3 (X & Y Axes 20 mA/div)

20Hz, sect 25 (X & Y Axes 5 mA/div)

Steady State waveforms @6.5 Hz

a1:Phase Voltage (50 V/div), a2:Phase Current (0.5 A/div), a3:Estimated Stator Voltage (50 V/Div) and a4:Filtered estimated voltage (50 V/Div); b1:Phase Voltage (100 V/div), b2:Phase Current (0.5 A/div), b3:Capacitor Voltage C1 (5 V/div) and b4:Capacitor Voltage C4 (2 V/Div) (X-axis 50 ms/div)

a1:Phase Voltage (100 V/div), a2:Phase Current (0.5 A/div), a3:Estimated Stator Voltage (50 V/Div) and a4:Filtered estimated voltage (50 V/Div); b1:Phase Voltage (100 V/div), b2:Phase Current (0.5 A/div), b3:Capacitor Voltage C1 (5 V/div) and b4:Capacitor Voltage C4 (2 V/Div) (X-axis 10 ms/div)

Steady State waveforms @30 Hz

a1:Phase Voltage (100 V/div), a2:Phase Current (0.5 A/div), a3:Estimated Stator Voltage (100 V/Div) and a4:Filtered estimated voltage (100 V/Div); b1:Phase Voltage (200 V/div), b2:Phase Current (0.5 A/div), b3:Capacitor Voltage C1 (5 V/div) and b4:Capacitor Voltage C4 (2 V/Div) (X-axis 10 ms/div)

Steady State waveforms @40Hz

a1:Phase Voltage (200 V/div), a2:Phase Current (0.5 A/div), a3:Estimated Stator Voltage (100 V/Div) and a4:Filtered estimated voltage (100 V/Div); b1:Phase Voltage (200 V/div), a2:Phase Current (0.5 A/div), b3:Capacitor Voltage C1 (5 V/div) and b4:Capacitor Voltage C4 (2 V/Div) (X-axis 5 ms/div)

FFT of phase Voltage

Normalized Harmonic Spectrum (FFT) of phase Voltage

Transient Experimental Results

Proposed Hysteresis Controller characteristics when a sudden change in Isq* is applied

a1:Phase Voltage (100 V/div), a2:Reference and Actual Phase Currents (0.5 A/div) when 3 A isq step is applied at 20 Hz (X-axis 20 ms/div) b1:Phase Voltage (100 V/div), b2:Reference and Actual Phase Currents (0.5 tA/div) when 3 A isq step is applied at 30 Hz (X-axis 5 ms/div)

Transient Experimental Results

Speed reversal from 30 Hz to -30 Hz

a1:Phase Voltage (100 V/div), a2:Reference Phase Current (1 A/div), a3:Actual Phase Current (1 A/div) and a4:frequency (50 Hz/div) (X-axis 500 ms/div) b1:Phase Voltage (100 V/div), b2:Phase Current (1 A/div), b3:Capacitor Voltage C4 (20 V/Div) and b4:Capacitor Voltage C1 (50 V/Div) (X-axis 200 ms/div)

Conclusion

- Current hysteresis controller for multilevel dodecagonal voltage space vector VSI fed IM drive
- Proposed controller has steady state switching frequency pattern similar to that of VC-SVPWM multilevel dodecagonal inverter
- All advantages of space phasor based HCC adjacent voltage vector switching, excellent dynamic performance, simple control
- All advantages of multilevel dodecagonal voltage space elimination of 6(n±1), (n=odd) harmonics extended linear modulation range reduced dv/dt stress and EMI problems

A 5th and 7th Order Harmonic Suppression Scheme for Open-end Winding Split-phase IM Drive Using Capacitor-fed Inverters

Organization

- Split-phase (asymmetrical six-phase) motors
- Two-level VSI fed split-phase IM
- Space vector decomposition
- Harmonic suppression
- Proposed Scheme
- Simulation and Experimental Results
- Conclusion

Split-phase Induction Motors

phase belt of 3-phase IM split into two halves with 30° electrical separation

- Advantages
 - ▲ 5th and 7th order harmonics completely eliminated from flux and rotor currents
 - ▲ Reduced DC-link requirement
 - 🔺 Improved Reliability
- Disadvantages
 - ▲ large 5th and 7th order harmonic currents in the stator windings

Existing Harmonic Suppression Schemes

- Carrier-based PWM
 - Poor DC bus utlization
- Inductive filters
 - ▲ Bulky and costly
- Special PWM technique using four active vectors instead of two in SVPWM
 A High switching frequency and complex computations
- Specially designed motors increase leakage inductance
 - Custom motor designs are expensive

Harmonic Suppression using Inductive Filters

Split-phase IM fed from VSI, with inductive filters

- Three transformers, nine windings
- Bulky and costly

VSI fed Split-phase Induction Motor

- Two 2-level inverters
- Switching state vectors in six-dimensional vector space

Space Vector Orthogonal Decomposition

Transform to three mutually orthogonal subspaces

$\left\lceil V_{\alpha} \right\rceil$	[1	$\cos 4 heta$	$\cos 8\theta$	$\cos heta$	$\cos 5 heta$	$\cos 9\theta$	V_A
V_{β}	0	$\sin 4 heta$	$\sin 8 heta$	$\sin heta$	$\sin 5 heta$	$\sin 9 heta$	V_B
V_{z1}	 1	$\cos 8\theta$	$\cos 4\theta$	$\cos 5 heta$	$\cos heta$	$\cos 9\theta$	V_C
V_{z2}	 0	$\sin 8 heta$	$\sin 4\theta$	$\sin 5 heta$	$\sin heta$	$\sin 9 heta$	$V_{A'}$
V_{o1}	1	1	1	0	0	0	$V_{B'}$
$\lfloor V_{o2} \rfloor$	0	0	0	1	1	1	$V_{C'}$

• α - β sub-space : fundamental and harmonics of order k = 12m ± 1 (m = 1, 2, · · ·)

contribute to the electromechanical energy conversion

- z1-z2 subspace: harmonics of order k = 6m ± 1 (m = 1, 3, 5, · · ·)
 - no contribution to the rotating air-gap flux; new zero sequence
- o1-o2 subspace: triple-n order harmonics
 - conventional zero sequence components

Space Vector Locations

vector locations represented as combination of individual three-phase inverters

e.g: vector 21' : vector 2 from INV-1 and vector 1' from INV-2

SVPWM uses vectors lying on the outermost 12-sided polygon in α-β subspace

significant projection in z1-z2 subspace
Suppressing 5th and 7th Order Harmonics

Suppressing 5th and 7th Order Harmonics Contd...

- Projection on z1-z2 plane for same DC-link
 - ▲ main vector 21' = 0.268 V_D
 - \blacktriangle secondary vector 45' = 0.732 V_D
 - \blacktriangle secondary vector 36' = 1 V_D
- DC-link Scaling
 - secondary vector $45' \rightarrow 0.268/0.732 = 0.366$
 - secondary vector $36' \rightarrow 0.268/1 = 0.268$

Suppressing 5th and 7th Order Harmonics Contd...

- Effect in α - β plane
 - ▲ secondary vector 45' aids main vector 21'
 => DC-link V_{dc} supplies power (discharging vector)
 - ▲ secondary vector 36' opposes main vector 21'
 => DC-link V_{dc} sinks power (charging vector)

Proposed Power Circuit

▶ Replace DC-link V_{dc} with capacitor of voltage V_c

• Average the two possible (45' and 36') vectors to take zero net power from the capacitor

Proposed Scheme Design

- Choose capacitor voltage V_C
- Find relative switching time duration of the two vectors from the open-end side
 - ▲ Charging vector (36') applied for k^*T_x
 - **A** Discharging vector (45') applied for $(1-k)^*T_x$

Finding time duration of the two vectors

 $V_D = 2V_{DC} \cos 15^o$

 $V_d = 2V_c cos 15^o$

- **b** Use volt-sec balance in α - β plane
 - ▲ net zero power due to two secondary vectors

$$V_{\text{dischrg}} \cdot (1 - k)T_{\text{x}} = V_{\text{chrg}} \cdot k T_{\text{x}}$$

▲
$$0.732V_{d} \cdot (1 - k)T_{x} = 0.268V_{d} \cdot k T_{x}$$

Finding Required Capacitor Voltage

 $V_D = 2V_{DC} \cos 15^o$

 $V_d = 2V_c cos 15^o$

- Use volt-sec balance in z1-z2 plane
 - ▲ cancel 5th and 7th harmonics due to main vector

$$V_{chrg} \cdot kT_{x} + V_{dischrg} \cdot (1 - k)T_{x} = V_{main} \cdot T_{x}$$

 $\land V_{d} \cdot kT_{x} + 0.732V_{d} \cdot (1 - k)T_{x} = 0.268V_{D} \cdot T_{x}$

$$\land$$
 using k = 0.732, gives V_d = 0.289V_D

PWM Scheme

Synchronized PWM with two sample per sector

Conventional SVPWM for main inverter

- Two additional PWM for secondary inverter
 - one for each active vector
 - selects charging/discharging vector

Alternate Power Circuit

- Use two capacitors instead of one
- Replace two DC-link power supplies with single power supply

Steady State waveforms @10 Hz

- SVPWM without harmonic filtering
 - ▲ Phase voltage : ~18% 5th Harmonic
 - ▲ Phase current : ~70% 5th Harmonic
- Proposed Controller
 - ▲ Phase voltage : <1% 5th Harmonic
- ▲ Phase current : <5% 5th Harmonic

Normalized Harmonic Spectrum (FFT) of phase current

Steady State waveforms @20 Hz

- SVPWM without harmonic filtering
 - ▲ Phase voltage : ~19% 5th Harmonic
 - ▲ Phase current : ~105% 5th Harmonic
- Proposed Controller
- ▲ Phase voltage : <1% 5th Harmonic
- ▲ Phase current : ~5% 5th Harmonic

Steady State waveforms @40 Hz

- SVPWM without harmonic filtering
 - ▲ Phase voltage : ~19% 5th Harmonic
 - ▲ Phase current : ~122% 5th Harmonic
- Proposed Controller
 - ▲ Phase voltage : <1% 5th Harmonic
 - ▲ Phase current : <10% 5th Harmonic

Normalized Harmonic Spectrum (FFT) of phase current

Steady State waveforms @50 Hz

- SVPWM without harmonic filtering
 - ▲ Phase voltage : ~20% 5th Harmonic
 - ▲ Phase current : ~158% 5th Harmonic
- Proposed Controller
 - ▲ Phase voltage : <1% 5th Harmonic
 - ▲ Phase current : ~10% 5th Harmonic

Steady State waveforms @10 Hz

- (a) and (b) Proposed Controller
 - Current nearly sinusoidal
 - ▲ Capacitor voltage tightly controlled
- (c) SVPWM without filtering
 - Secondary inverters not switched
 - Current high 5th and 7th order harmonics

Steady State waveforms @20 Hz

- (a) and (b) Proposed Controller
 - Current nearly sinusoidal
 - Capacitor voltage tightly controlled
- (c) SVPWM without filtering
 - Secondary inverters not switched
 - Current high 5th and 7th order harmonics

Steady State waveforms @30 Hz

- (a) and (b) Proposed Controller
 - Current nearly sinusoidal
 - Capacitor voltage tightly controlled
- (c) SVPWM without filtering
 - Secondary inverters not switched
 - Current high 5th and 7th order harmonics

Steady State waveforms @40 Hz

- (a) and (b) Proposed Controller
 - Current nearly sinusoidal
 - ▲ Capacitor voltage tightly controlled
- (c) SVPWM without filtering
 - Secondary inverters not switched
 - Current high 5th and 7th order harmonics

Steady State waveforms @50 Hz

- (a) and (b) Proposed Controller
 - Current nearly sinusoidal
 - ▲ Capacitor voltage tightly controlled
- (c) SVPWM without filtering
 - Secondary inverters not switched
 - Current high 5th and 7th order harmonics

Steady State waveforms @10 Hz

a1:Pole Voltage at A1 (50 V/div), a2:Pole Voltage at A2 (10 V/div) a3:Phase Voltage (100 V/div), a4: Phase Current (2 A/div)

b1:Voltage of Phase A (100 V/div), b2:Current of Phase A (2 A/div) b3:Capacitor Voltage V_{C1} (20 V/div), b4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 20 ms/div)

Steady State waveforms @20 Hz

a1:Pole Voltage at A1 (50 V/div), a2:Pole Voltage at A2 (10 V/div) a3:Phase Voltage (100 V/div), a4: Phase Current (2 A/div)

b1:Voltage of Phase A (100 V/div), b2:Current of Phase A (2 A/div) b3:Capacitor Voltage V_{C1} (20 V/div), b4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div)

Steady State waveforms @30 Hz

a1:Pole Voltage at A1 (50 V/div), a2:Pole Voltage at A2 (10 V/div) a3:Phase Voltage (100 V/div), a4: Phase Current (2 A/div)

b1:Voltage of Phase A (100 V/div), b2:Current of Phase A (2 A/div) b3:Capacitor Voltage V_{C1} (20 V/div), b4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div)

Steady State waveforms @40 Hz

a1:Pole Voltage at A1 (50 V/div), a2:Pole Voltage at A2 (10 V/div) a3:Phase Voltage (100 V/div), a4: Phase Current (2 A/div)

b1:Voltage of Phase A (100 V/div), b2:Current of Phase A (2 A/div) b3:Capacitor Voltage V_{C1} (20 V/div), b4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div)

Steady State waveforms @50 Hz

a1:Pole Voltage at A1 (50 V/div), a2:Pole Voltage at A2 (10 V/div) a3:Phase Voltage (100 V/div), a4: Phase Current (2 A/div)

b1:Voltage of Phase A (100 V/div), b2:Current of Phase A (2 A/div) b3:Capacitor Voltage V_{C1} (20 V/div), b4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div)

Steady State waveforms @10 Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 20 ms/div).

Steady State waveforms @20Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div).

Steady State waveforms @30Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 10 ms/div).

Steady State waveforms @40Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 5 ms/div).

Steady State waveforms @48Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 5 ms/div).

Steady State waveforms @50Hz

a1:Phase Voltage (50 V/div), a2:Pole Voltage at A1 (100 V/div), a3: Pole Voltage at A2 (20 V/div), a4:Phase Current (0.5 A/div)

b1:Phase Voltage A (50 V/div), b2:Phase Voltage A' (50 V/div), b3:Capacitor Voltage V_{C1} (20 V/div), 4:Capacitor Voltage V_{C2} (20 V/div)

(X-axis 5 ms/div).

Conclusion

- New scheme for harmonic suppression in split-phase IM
 - **No need of bulky inductive filters, or complex PWM techniques**
- Secondary inverters for harmonic suppression
- Simple PWM technique
- Valid upto full modulation range (square wave mode operation of main inverter)
 - ▲ 5th harmonic reduced from 158% to less than 10% (@ Square wave operation)

Journal Papers

- "A nearly constant switching frequency Current Error Space Vector Based Hysteresis Controller for an IM drive with 12-sided polygonal voltage space vectors"
 – Najath Abdul Azeez, Anubrata Dey, K. Mathew, Jaison Mathew, K. Gopakumar, accepted for publication in EPE(European Power Electronics Association) journal.
- "A Medium Voltage Inverter Fed IM Drive using Multilevel 12-sided polygonal Vectors, with Nearly Constant Switching Frequency Current Hysteresis Controller," Najath Abdul Azeez; Gopakumar, K.; Mathew, J.; K, M.; Dey, A.; Kazmierkowski, M., accepted for publication in IEEE Transactions on Industrial Electronics.
- "A Harmonic Suppression Scheme for Open-End Winding Split-Phase IM Drive Using Capacitive Filters, For The Full Speed Range" Najath Abdul Azeez, Jaison Mathew, K. Gopakumar and Carlo Cecati under review in IEEE Transactions on Industrial Electronics.

Conference Papers

- "A 5th and 7th Order Harmonic Suppression Scheme for Open-end winding Asymmetrical Six-phase IM Drive Using Capacitor-fed Inverter" – Najath Abdul Azeez, Jaison Mathew, K. Gopakumar, Carlo Cecati, accepted for IECON 2013
- "A nearly constant switching frequency current hysteresis controller with generalized parabolic boundaries using 12-sided polygonal voltage space vectors for IM drives,"
 Najath Abdul Azeez; Dey, A.; Mathew, K.; Mathew, J.; Gopakumar, K., XXth International Conference on Electrical Machines (ICEM), 2012 vol., no., pp.810-815, 2-5 Sept. 2012

Conclusion

Conclusion

- HCC for single and multilevel dodecagonal VSI fed IM drives
- Harmonic suppression scheme for open-end winding split-phase IM

Estimating of Fundamental Stator Voltage

Space phasor based equivalent circuit of IM in the stationary reference frame with rotor flux as reference vector

$$\Rightarrow \overrightarrow{V_s} = \overrightarrow{V_k} - R_s \Delta \overrightarrow{i_s} - \sigma L_s \frac{d\Delta \overrightarrow{i_s}}{dt} =$$

$$\overrightarrow{V_{k}} = R_{s}\overrightarrow{i_{s}} + \sigma L_{s}\frac{d\overrightarrow{i_{s}}}{dt} + \frac{d\overrightarrow{\Psi_{r}}}{dt};$$

$$\overrightarrow{i_{s}} = \overrightarrow{i_{s}^{*}} + \Delta \overrightarrow{i_{s}}$$

$$\overrightarrow{i_{s}} = \overrightarrow{i_{s}^{*}} + \Delta \overrightarrow{i_{s}}$$

$$\overrightarrow{V_{k}} = R_{s}\left(\overrightarrow{i_{s}^{*}} + \Delta \overrightarrow{i_{s}}\right) + \sigma L_{s}\frac{d\left(\overrightarrow{i_{s}^{*}} + \Delta \overrightarrow{i_{s}}\right)}{dt} + \frac{d\overrightarrow{\Psi_{r}}}{dt}$$
it of IM
th rotor
$$taking \ \overrightarrow{V_{s}} = R_{s}\overrightarrow{i_{s}^{*}} + \sigma L_{s}\frac{d\overrightarrow{i_{s}^{*}}}{dt} + \frac{d\overrightarrow{\Psi_{r}}}{dt}$$

$$then \ \overrightarrow{V_{k}} = \overrightarrow{V_{s}} + R_{s}\Delta \overrightarrow{i_{s}} + \sigma L_{s}\frac{d\Delta \overrightarrow{i_{s}}}{dt}$$

$$\downarrow$$

$$V_{s\alpha} = V_{k\alpha} - \Delta i_{s\alpha}R_{s} - \sigma L_{s}\frac{d\Delta i_{s\alpha}}{dt}$$

$$\Leftrightarrow$$

$$k \ V_{s\beta} = V_{k\beta} - \Delta i_{s\beta}R_{s} - \sigma L_{s}\frac{d\Delta i_{s\beta}}{dt}$$

Harmonic Analysis

Dodecagon Vs Hexagon comparison

Maximum Fundamental voltage:

- hexagon = $0.637 V_{DC}$
- dodecagon = $0.659 V_d$
- same max voltage => $V_d = 0.966V_{DC}$

Maximum voltage at end of linear modulation:

- hexagon = $V_{DC} \cos(pi/6)$
- dodecagon = $V_d \cos(pi/12)$
- ➡ difference = 0.067

Simulation Results - Phase Voltage & Current

1:Phase Current (1 A/div), 2:Phase Voltage (100 V/div)

1:Phase Current (5 A/div), 2:Phase Voltage (100 V/div)

SVPWM without harmonic filter @ 10Hz

 $10 \mathrm{Hz}$ steady state, x-axis 20ms/div

1:Phase Current (1 A/div), 2:Phase Voltage (100 V/div) 1:Phase Current (5 A/div), 2:Phase Voltage (100 V/div)

20Hz steady state, x-axis 20ms/div

SVPWM without harmonic filter @ 40Hz

1:Phase Current (5 A/div), 2:Phase Voltage (100 V/div)

 $40 \mathrm{Hz}$ steady state, x-axis 10ms/div

1:Phase Current (5 A/div), 2:Phase Voltage (100 V/div)

1:Phase Current (10 A/div), 2:Phase Voltage (100 V/div)

50Hz steady state, x-axis 5ms/div

Simulation Results

Simulation Results

