
Service Scheduling for Random Requests With
Deadlines and Linear Waiting Costs

Ramya Burra , Chandramani Singh , and Joy Kuri

Abstract—We study service scheduling problems in a slotted
system where jobs arrive according to a Bernoulli process and
leave within two slots after arrival. Service costs are quadratic in
service rates, and there is also a linear waiting cost. We frame the
problems as average cost Markov decision processes. While the
studied system is a linear system with quadratic costs, it has
state-dependent control and a non-standard cost function
structure, rendering the optimization problem complex. We
obtain explicit optimal policies in the case when all the jobs are of
the same size. In particular, we show that the optimal policy is
linear or piece-wise linear in the system state, depending on the
system parameters. We then consider a scenario where each
service request comes from a rational agent interested in
optimizing his/her service and waiting cost, and we obtain a
symmetric Nash equilibrium. We extend our study to a scenario
where job sizes can take distinct values, and job arrivals
constitute a Markov chain. Here, we provide an algorithm that
yields the optimal policy, but it is of exponential complexity.
Finally, we propose an approximate policy of linear complexity
for general job size distributions and derive its performance
bound.

Index Terms—Service Scheduling, Linear waiting costs,
Quadratic service cost, Markov Decision Process.

I. INTRODUCTION

SERVICE or job scheduling problems arise in many con-

texts such as cloud computing, task scheduling in CPUs,

traffic routing and scheduling, production scheduling in

plants, scheduling charging of electric vehicles (EVs), etc.

For instance, in cloud computing, server power consumption

increases as a convex function of the load [1]. Hence, often

delay-tolerant jobs need to be deferred in order to save on

long-term average power cost. Similarly, traffic needs to be

regulated in transportation networks to ensure that conges-

tion is not excessive at any point in time. Serious concerns

have been raised about service costs in many of these prob-

lems. For instance, it was estimated that electricity used in

global data centers was about 1.1% of the total electricity

use in 2010, and it has been increasing since then [2]. In the

context of EV charging, the electricity cost of a charging sta-

tion could rise quite steeply as the load increases. So, it is

immensely important to schedule jobs or services in all such

cases optimally.

When service costs are convex functions of offered loads,

optimal scheduling promotes load balancing over time. How-

ever, if deferring loads also incur waiting costs, equalizing loads

across time is not optimal. We study service scheduling in slot-

ted systems with Bernoulli service arrivals and service delay

guarantees. We consider quadratic service costs and linear wait-

ing costs. In particular, jobs can stay for two slots but incur a

waiting cost in the second slot. We see that this service schedul-

ing problem is a special case of constrained linear quadratic

control (See [3, Section 4.2]). We provide an optimal service

scheduling policy and a symmetric Nash equilibrium policy for

the scenario where jobs are interested in minimizing their own

costs. Our framework applies to several service scheduling

problems like CPU speed scaling, EV charging, etc. For an elab-

orate discussion, see Section A of supplementary material.

A. Related Work

Job or service scheduling problems have drawn great atten-

tion in many domains in the recent past. In the context of EV

charging, scheduling is aimed at optimizing charging costs.

Electricity generation cost is known to be a quadratic function

of the charging rate [4]. The authors in [5] adopt this quadratic

cost model. They assume that EV arrival statistics are not avail-

able and propose an online scheduling algorithm to minimize

the cost. In [6], the authors consider a charging station with

multiple outlets and real-time pricing. They assume that EVs

have uncertain departure times. They frame the EV scheduling

problem as a stochastic optimization problem and provide a

closed-form solution. The authors of [7] have formulated a

vehicle to grid (V2G) control problem with price uncertainty as

a Markov decision process (MDP). Furthermore, they also pro-

posed a Q-learning algorithm. In [8], the authors consider the

problem of minimizing random processing cost and convex

non-completion penalty for jobs that arrive randomly at a ser-

vice center with multiple service stations. They formulate this

problem as a restless multi-arm bandit. They propose an

approximate algorithm with asymptotic guarantees.

In the area of smart grids, scheduling aims at peak-shaving

to save on steep electricity costs at higher loads. In [9], the

authors consider renewable energy buying-back schemes with

dynamic pricing to achieve energy efficiency for smart grids.
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They pose this problem as convex optimization and design

distributed day-ahead pricing algorithms. The authors in [10]

find the optimal energy consumption levels for grid subscrib-

ers to maximize the aggregate utility of all the subscribers.

In the case of data centers, server scheduling, aimed at mini-

mizing power consumption, is implemented in the form of

dynamic voltage and frequency scaling (DVFS). The authors

in [11], [12] propose algorithms to dynamically schedule the

workload on Internet data center servers while meeting con-

stant service delay guarantees. In [13], the authors assume that

the energy curve of data center switches is also a convex func-

tion of their transmission speeds and design VM assignment

and routing algorithms to minimizing energy consumption.

The authors in [14] consider a finite number of agents com-

peting for a common link to ship their demands to a destina-

tion over time. They consider polynomial congestion cost and

linear waiting cost to obtain optimal, and equilibrium flows.

However, in this setup, every agent has a common arrival and

deadline. In [15], the authors consider routing on a ring net-

work in the presence of quadratic congestion cost. However,

their formulation does not have a temporal element and is thus

a one-shot optimization problem. Scheduling for minimizing

energy costs has also been considered in the context of CPU

power consumption [16], [17], big data processing [18], pro-

duction scheduling in plants [19]. In [20], the authors propose

an optimal online algorithm for job arrivals with deadline

uncertainty. In this work, they consider convex processing

cost. They also derive a competitive ratio for the proposed

algorithm. None of these studies account for the waiting costs

of jobs as considered in our work.

Speed scaling problems have been studied extensively in com-

puter science and systems engineering. In one of the first works,

the authors in [16] consider a minimum energy scheduling prob-

lem in the context of CPU processing. They assume that instanta-

neous processing cost is a convex function of the processing

speed and provides optimal offline and online algorithms. There

have been several follow-up works since then. In [21], the

authors provide a formal proof of optimality of the algorithm

in [16]. The authors also propose online algorithms to minimize

energy and minimize the maximum temperature of the CPU. In

the same context, the authors in [22] study the tradeoff between

the energy consumption and the total flow time of all jobs. Unlike

the above problems, we consider service scheduling in a slotted

system and, in addition to energy cost, also include a waiting

cost in the objective. Our service scheduling framework applies

to several contexts, e.g., CPU speed scaling, EV charging, etc.

For instance, in the context of EV charging, the drivers

become jittery as the deadline approaches if they have not

received a good amount of charge until then [23]. This justifies

the inclusion of waiting costs in our formulation. Our problem

can be seen as a discrete version of the speed scaling problem

with a waiting cost. More precisely, weminimize the total aver-

age cost that comprises energy cost and a waiting cost.

Recently, the authors in [24] focus on optimizing a weighted

sum of energy cost and tardiness in the context of jobs with soft

deadlines. We can see our setting as having a soft deadline of

one slot and a hard deadline of two slots. Unlike [24], we

consider weighted tardiness cost, weighed by the amount of

service not met by the soft deadline. Refer to Table I for an

overview of the distinction between our formulation and others.

Linear systems with quadratic cost have also been widely

studied in control theory. For instance, in infinite horizon

unconstrained linear quadratic control, the optimal policy is

found to be linear in system state and is given by the Riccati

equation [25]. The authors in [26] study constrained linear

quadratic control and show that the optimal policy is piece-

wise linear and the value function is piece-wise quadratic. We

have a control problem with state-dependent constraints. The

problem does not conform to standard assumptions, e.g., posi-

tive definiteness of the control weighing matrix.

B. Our Contribution

(1) We study optimal service scheduling for Bernoulli job

arrivals, quadratic service costs, linear waiting costs,

and maximum sojourn time of two slots. We frame this

as a constrained linear quadratic control problem and

derive optimal scheduling policy for the case where

jobs’ service requirements are identical.

(2) We then consider a scenario where each service request

comes from a rational agent interested in optimizing

his/her service and waiting cost. We obtain a symmetric

Nash equilibrium for the associated stochastic game.

(3) We extend the framework to allow two distinct job sizes

with Markov service requests. We do not get a closed-

form optimal policy, but we provide an algorithm that

computes the optimal policy.

(4) We extend the framework to general, i.i.d. service

requirements. The algorithm for two distinct job sizes

can be extended to address this scenario as well. We

also propose a closed-form approximate policy and

derive its performance bound.

II. SYSTEM MODEL

We consider a discrete-time (slotted) system with a service

facility and dynamically arriving “splittable” service requests.

Thus, for a service request in any slot, the service provider

may defer a portion of it to future slots. Serving requests incur

a cost, and the cost per unit service in a slot depends on the

quantum of service delivered in that slot. Here we focus on

TABLE I
COMPARISION OF OUR FORMULATION WITH DIFFERENT MODELS

1 The function f : ½0;1Þ ! Rþ is called a power function with exponent
a, if fðxÞ ¼ xa;a � 1.
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the problems of scheduling of service. Below we present the

system model and the scheduling problems formally.

Service request model: Agents with service requests arrive

according to an i.i.d. BernoulliðpÞ process. All the agents

demand c amount of service. Further, each request can be met

in at most two slots, i.e., a fraction of the demand arriving in a

slot could be deferred to the next slot. In Section V, we extend

this model to include general service requirements and Mar-

kov job arrivals.

Cost model: The cost consists of two components:

(1) Service cost: The service cost per unit service in a slot is

a linear function of the total service offered in that slot.

Thus the total service cost in a slot is square of the total

offered service in that slot.

(2) Waiting cost: Each service incurs a waiting cost that is a

linear function of the portion of the service deferred to

the next slot. We use d to denote the waiting cost per

deferred unit service. We use linear waiting cost instead

of prominently used constant waiting cost for two rea-

sons. First, it encourages the service provider not to

defer large fractions of demands. Secondly, in many of

the systems of interest, agents can leave the system in

between slots also if their service requirements are met.

In such systems, assuming the earliest deadline first ser-

vice discipline, agents’ waiting costs would indeed be

commensurate with the amount of deferred demands.

Let, for k � 1, xk be the remaining demand from slot k� 1
to slot k; x1 ¼ 0. This demand must be met in slot k. Also,
for k � 1, let vk be the extra service offered in slot k.
Clearly, vk 2 ½0;c� and is 0 if there is no request in slot k. A
scheduling policy p ¼ ðpk; k � 1Þ is a sequence of functions
pk : ½0;c� ! ½0;c� such that if there is a service request in
slot k then pkðxkÞ gives the amount of service deferred
from slot k to slot kþ 1. In other words,

xkþ1 ¼ pkðxkÞ ¼ c� vk; if a request arrives in slot k
0; otherwise.

�

We consider the following two scheduling problems.

A. Optimal Scheduling

We aim to minimize the time-averaged cost of the service

provider. More precisely, we want to determine the scheduling

policy p that minimizes

lim
T!1

1

T

XT
k¼1

E½ðxk þ vkÞ2 þ dxk�: (1)

We obtain the optimal solution in Section III.

At first glance, the optimization problem appears to be a

special case of the well-studied constrained linear quadratic

control Markov decision problems. In particular, if we define

binary variables ek; k � 1, as

ek ¼ c; if slot k has a request
0; otherwise

�

then ðxk; ekÞ can be considered to be the system state in slot k.
The total service in slot k, �uk 2 ½xk; xk þ ek�, and wk ¼ ekþ1

can be considered the action and the noise in slot k, respec-
tively. Then state evolution happens as ðxkþ1; ekþ1Þ ¼
ðxk þ ek � �uk; wkÞ and the single stage cost is dxk þ �u2

k. We

see that the actions are subject to state dependent constraints

and the single stage costs are not expressible in the form

ðxk; ekÞTQðxk; ekÞ þ �u2
k with Q a positive semidefinite matrix.

Thus the problem does not conform to the standard framework.

B. Equilibrium for Selfish Agents

Here, we consider rational agents, each determining how

much of its demand should be deferred. Further, each agent is

aiming at minimizing his/her own service and waiting costs.

For example, in the context of EV charging, EV owners being

rational agents would be interested in minimizing their own

cost instead of the total system cost. In such scenarios we can

frame service-scheduling problem as a non-cooperative

dynamic game among the agents. In this context, let us refer

to pk as a strategy of the agent who arrives in slot k (if there is

one) and p ¼ ðpk; k � 1Þ as a strategy profile.2 The expected

cost of an agent who arrives in slot k, if it sees a remaining

demand x, is

ckðx;pÞ ¼ðc� pkðxÞÞðc� pkðxÞ þ xÞ þ pkðxÞðpkðxÞ
þ pðc� pkþ1ðpkðxÞÞÞ þ dÞ; (2)

A strategy profile p is called a Nash equilibrium if

ckðx;pÞ � ckðx; ðm;p�kÞÞ
for all k � 1, x 2 ½0;c� and strategies m : ½0;c� ! ½0;c�.3 We

focus on symmetric Nash equilibria of the form ðp;p; . . .Þ and
obtain one such equilibrium in Section IV.

The proposed framework can be used to model many sched-

uling and speed scaling problems, e.g., traffic scheduling, speed

scaling in CPUs, scheduling of charging of EVs etc. Please see

Section A in supplementary material for a detailed discussion.

III. OPTIMAL SCHEDULING

We first show that the optimal scheduling problem can be

transformed into a stochastic shortest path problem. Let

Ai; i � 1 be the successive slots that have service requests but

do not have service requests in the preceding slots. More pre-

cisely,

Ai ¼
minfk : slot k has a requestg; if i ¼ 1
min k > Ai�1 : slot k has a request butf

k� 1 does notg; if i � 2:

8<
:

Then Ai; i � 1 can be seen to be renewal instantsof a renewal

process. We show below that the mean renewal life times,

E½Aiþ1 � Ai�, do not depend on the scheduling policy.

Lemma 3.1: EðAiþ1 � AiÞ ¼ 1
pð1�pÞ :

2 Notice that p consists of a strategy for each slot but there may not be any
agent in a slot to use the corresponding strategy.

3 ðm;p�kÞ , ðp1; . . . ;pk�1;m;pkþ1; . . .Þ.
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Proof: See Section B in supplementary material. &

Hence, from the Renewal Reward Theorem,

lim
T!1

1

T

XT
k¼1

E½ðxk þ vkÞ2 þ dxk�

¼
E
PAiþ1�1

k¼Ai
ðxk þ vkÞ2 þ dxk

� �h i
E½Aiþ1 � Ai�

¼ pð1� pÞE
XAiþ1�1

k¼Ai

ðxk þ vkÞ2 þ dxk

� �" #
;

where the last equality follows from Lemma 3.1. So, we can

focus on minimizing the aggregate cost over a “renewal life-

time” Aiþ1 � Ai. But we do not incur any cost after service

completion of the last customer in this lifetime. We can thus

frame the problem as stochastic shortest path problem where

terminal state corresponds to absence of request in a slot.

Remark 3.1: Average cost optimality problems have equiv-

alent stochastic shortest path formulations and we often solve

the latter ones to get a solution to the former ones [3]. We

obtain a simpler connection in the service scheduling problem

as renewal cycle length does not depend on policy.

Stochastic shortest path formulation. We let xk be the sys-

tem state at any slot k and t be a special terminal state which
is hit if there is no new request in a slot. Let xkþ1 also denote

the action in slot k. Clearly, the single stage cost before hitting
the terminal state is ðxk þ c� xkþ1Þ2 þ dxk (see Fig. 1).

Given the state-action pair in slot k, ðxk; xkþ1Þ, the next state

is the terminal state with probability 1� p and the terminal

cost is xkþ1ðxkþ1 þ dÞ.
Let J : ½0;c� ! Rþ be the optimal cost function for the

problem. It is the solution of the following Bellman’s equa-

tion: For all x 2 ½0;c�,

JðxÞ ¼ min
u2½0;c�

ðc� uþ xÞ2 þ dx
n
þpJðuÞ þ ð1� pÞuðuþ dÞg:

The optimal cost is attained by a stationary policy of the form

ðp�;p�; . . .Þ where p�ðxÞ minimizes the right hand side in the

above equation for all x. For brevity, we use p� to refer to this

policy. Let us define the “k-stage problem” as the one that

allows at most kþ 1 service requests. More precisely, here the

system is forced to enterthe terminal state after kþ 1 service

requests if it has not already done so. Let Jkð�Þ be the optimal

cost function of the k-stage problem. Clearly,

J0ðxÞ ¼ min
u

ðc� uþ xÞ2 þ dxþ uðuþ dÞ
n o

(3)

and for k � 1,

JkðxÞ ¼ min
u

ðc� uþ xÞ2 þ dxþ pJk�1ðuÞ
n
þð1� pÞuðuþ dÞg:

(4)

We can express Jð�Þ as the limit of Jkð�Þ as k approaches infin-
ity. Furthermore, we can express the desired optimal policy

also as the limit of the optimal controls of k-stage problems

(i.e., optimal actions in (3)-(4)). This is the approach we fol-

low to arrive at the optimal scheduling policy.

A. Optimal Policy

We show that the optimal policy is either piece-wise linear or

linear in the pending service depending on the parameters c; p
and d. If d > 2cð1� pÞ, the former case arises, and the suc-

cessive constituent line segments are characterized by sequen-

ces a�i ; b
�
i ; i � 0 defined below. These sequences converge to

a1 and b1, respectively (see Lemma 3.2(a) and (b)). If d �
2cð1� pÞ, the optimal policy is linear and is characterized by

a1 and b1. For i � 0, let us define the following sequences

a�i ¼
1; if i ¼ 0
1� p

1þa�
i�1

; otherwise

(
(5)

b�i ¼
2pcþ d; if i ¼ 0
pð2a�

i�1
cþb�

i�1
Þ

1þa�
i�1

þ d; otherwise.

(
(6)

Let us further define

xi ¼
b�
0
2 � c; if i ¼ 0
2ð1þa�

i
Þxi�1þb�

i
2 � c; otherwise.

(
(7)

If d > 2cð1� pÞ, the sequence, xi; i � 0, is strictly increas-

ing (see Lemma 3.3(b)). It consists of the points where the

optimal policy changes it slope. We begin with formally stat-

ing the properties of the above sequences.

Lemma 3.2: ðaÞ The sequence a�k; k � 0 converges to

a1 :¼ ffiffiffiffiffiffiffiffiffiffiffi
1� p

p
.

ðbÞ The sequence b�k; k � 0 converges to

b1 :¼ 2pc

1þ ffiffiffiffiffiffiffiffiffiffiffi
1� p

p þ dffiffiffiffiffiffiffiffiffiffiffi
1� p

p :

ðcÞ If 2cð1� pÞ � d, then b�i � 2pcþ d � 2c for all i � 0
and, so b1 � 2c.

Fig. 1. The system evolution: The noise variables eks are i.i.d. Bernoulli(p).
The state ðxk; ekÞ and action uk at slot k determine the cost at slot k and also
the state at slot kþ 1.
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ðdÞ If 2cð1� pÞ < d, then b�i � 2pcþ d > 2c for all i �
0 and, so b1 � 2c.
Proof: See Section C in supplementary material. &

Lemma 3.3: ðaÞ xþc�b1
2

ð1þa1Þ < c for all 0 � x � c.

ðbÞ If 2cð1� pÞ < d, then x0 > 0 and the sequence

xk; k � 0 is strictly increasing. Furthermore, there exists a k �
0 such that xk > c.

Proof: See Section D in supplementary material. &

The optimal scheduling policy is as follows.

Theorem 3.1: ðaÞ If d � 2cð1� pÞ,

p�ðxÞ ¼ xþ c� b1
2

ð1þ a1Þ :

ðbÞ If 2cð1� pÞ < d,

p�ðxÞ ¼
0; if x 2 ½0; x0�
2ðxþcÞ�b�

l
2ð1þa�

l
Þ ; if x 2 ½xl; xlþ1�; l ¼ 0; . . . ; K � 1

2ðxþcÞ�b�
K

2ð1þa�
K
Þ ; if x 2 ½xK;c�

8>>><
>>>:

whereK ¼ minfk : xkþ1 > cg.4
Proof: See Appendix A-A. &

Remark 3.2:

(1) When 2cð1� pÞ � d, the optimal scheduling policy is

a linear function.

(2) When 2cð1� pÞ < d, the optimal policy is a piecewise

linear function with progressively increasing slopes,

0; 1
1þa�

0
; . . . ; 1

1þa�
K
.

(3) When 2cð1� pÞ < d, assuming that the first user sees

zero pending service, it defers zero service to the next

slot. So, the second user also, irrespective of when it

arrives, sees zero pending service, and behaves simi-

larly. We can repeat this argument to conclude that no

user defers any service in this case.

(4) In the deterministic case (i.e., when p ¼ 1), 2cð1�
pÞ < d for any d > 0. Hence, the optimal scheduling

policy is a piecewise linear function. However, as

explained above, no user defers any service in this case.

The second remark implies that the optimal policy is convex

and increasing in the pending service. The following theorem

shows that the optimal cost is also a convex increasing func-

tion. The proof consists of inductively showing that Jkð�Þ; k �
0, are convex increasing and so is their limit.

Theorem 3.2: The optimal cost function JðxÞ is an increas-

ing convex function.

Proof: See Appendix A-B. &

IV. NASH EQUILIBRIUM FOR SELFISH AGENTS

In this section we provide a Nash equilibrium for the non-

cooperative game among the selfish agents (see Section II).

Specifically, we look at symmetric Nash equilibria where each

agent’s strategy is a piece-wise linear function of the remain-

ing demand of the previous player.

Let C : ½0;c� ! Rþ give the optimal cost for a player as a

function of the pending demand given that all other players

use strategy p0 : ½0;c� ! ½0;c�. Clearly, CðxÞ is given by the

following equation for all x 2 ½0;c�.

CðxÞ ¼ min
u2½0;c�

fðc� uÞðc� uþ xÞ

þ uðuþ dþ pðc� p0ðuÞÞÞg

We call �p0 ¼ ðp;0 p;0 . . .Þ a symmetric nash equilibrium if

p0ðxÞ attain the optimal cost in the above optimization prob-

lem for all x, i.e., if

p0ðxÞ 2 arg min
u2½0;c�

fðc� uÞðc� uþ xÞ

þ uðuþ dþ pðc� p0ðuÞÞÞg;

for all x 2 ½0;c�. We characterize one such nash equilibrium

in the following. As in section III we define k-stage problems,

where the tagged player has atmost k service requests after it,

before the terminal state is hit. Let Ckð�Þ be the tagged users

optimal cost in the k-stage problem and p0
kð�Þ be the corre-

sponding optimal strategy. Then

C0ðxÞ ¼ min
u2½0;c�

fðc� uÞðc� uþ xÞ þ uðuþ dÞg (8)

and for all k � 1,

CkðxÞ ¼ min
u2½0;c�

ðc� uÞðc� uþ xÞ þ uðuþ df

þpðc� p0
k�1ðuÞÞÞ

�
:

(9)

We can see CðxÞ as the limit of CkðxÞ as k approaches infin-

ity. Furthermore, the limit of the optimal strategy of k-stage
problems yield a symmetric Nash equilibrium.

A symmetric Nash equilibrium: We show that, similar to

the optimal policy, a Nash equilibrium policy is also either

piece-wise linear (not necessarily continuous) or linear in the

pending service. If d > ð2� pÞc, the former case arises, and

the successive constituent line segments are characterized by

sequences a0i; b
0
i; i � �1 defined below. These sequences con-

verge to a01 and b01, respectively (see Lemma 4.1(a) and (b)).

If d � ð2� pÞc, the Nash equilibrium policy is a01xþ b01,

where x is the pending service. For k � �1,

a0k ¼
0; if k ¼ �1

1
4�2pa0

k�1
; otherwise

(
(10)

b0k ¼
0; if k ¼ �1
ð2�pÞc�dþpb0

k�1
4�2pa0

k�1
; otherwise

(
(11)

We first state a few properties of the above sequences.

4 The cases x 2 ½xl; xlþ1� and x 2 ½xK;c� do not arise if x0 > c and the
former does not arise also when x0 � c < x1.
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Lemma 4.1: ðaÞ The sequence a0k; k � �1 converges to

a01 :¼ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2p

p
2p

:

Also, a01 < 1
2 .ðbÞ The sequence b0k; k � �1 converges to

b01 :¼ a01ðð2� pÞc� dÞ
1� a01p

:

Proof: See Section F in supplementary material. &

Further, let us define xk; k � 0 as

xk ¼ d� ð2� pÞc; if k ¼ 0
ð4� 2pa0k�1Þxk�1 � ð2� pÞcþ d� pb0k�1; otherwise.

�
(12)

If ð2� pÞc < d, the sequence, xi; i � 0, is strictly increasing

(see Lemma 4.2(b)). It consists of the points where the Nash

policy changes its slope. We begin with formally stating the

properties of the above sequences.

Lemma 4.2: ðaÞ a01xþ b01 < c for all 0 � x � c.

ðbÞ If ð2� pÞc < d then x0 > 0 and the sequence xk; k �
0 is strictly increasing. Furthermore, there exists a k � 0 such

that xk > c.

Proof: See Section G in supplementary material. &

Let us also define functions Q0
k : ½0;c� � ½0;c� ! Rþ, k �

0 as follows:

Q0
0ðx; uÞ ¼ ðcþ x� uÞðc� uÞ þ uðuþ dÞ

and for all k � 1,

Q0
kðx; uÞ ¼ ðcþ x� uÞðc� uÞ

þ uðuþ dþ pðc� a0k�1u� b0k�1ÞÞ:

Clearly,

CkðxÞ ¼ min
u2½0;c�

Q0
kðx; uÞ 8k � 0:

Finally, we define a another sequence x0
k; k � 0 as follows:

x0
0 ¼ x0 and for each k � 1, x0

k is the largest root of

Q0
k�1ðx; a0k�1xþ b0k�1Þ ¼ Q0

kðx; a0kxþ b0kÞ: (13)

We show that x0
k � xk 8k � 0 (See Section H in supplemen-

tary material). Hence, following Lemma 4.2(b), there exists a

K � 0 such that x0
k � c for all k � K and x0

k > c for all

k > K. Following theorem gives a symmetric Nash

equilibrium.

Theorem 4.1: �p0 ¼ ðp;0 p;0 . . .Þ is a symmetric Nash equi-

librium where

ðaÞ If d � ð2� pÞc,

p0ðxÞ ¼ a01xþ b01; 8x 2 ½0;c�;
ðbÞ If d > ð2� pÞc,

p0ðxÞ ¼
0; if x 2 ½0; x0

0�
a0lxþ b0l; if x 2 ½x0

l; x
0
lþ1�; l ¼ 0; 1; . . . ; K � 1

a0Kxþ b0K; if x 2 ½x0
K;c�

8<
:

Proof: See Section H in supplementary material. &

We illustrate the Nash equilibrium policy via an example in

Fig. 2.

Remark 4.1:

(1) When ð2� pÞc < d, the Nash equilibrium policy can

be discontinuous as seen in Fig. 2.

(2) When ð2� pÞc < d, assuming that the first user sees

zero pending service, it defers zero service to the next

slot. This argument can be repeated to conclude that no

user defers any service in this case. Recall that the opti-

mal policy does not defer demands when 2cð1� pÞ <
d. Hence, when 2cð1� pÞ < d < ð2� pÞc, the opti-

mal policy will not defer demands whereas the Nash

equilibrium policy will (Refer Fig. 3).

Fig. 2. The Nash equilibrium policy for p ¼ 0:3; d ¼ 4:5;c ¼ 2:5. The Nash
equilibrium policy is piece-wise linear, and is discontinuous at x ¼ 1:241 (see
the magnified graph).

Fig. 3. Optimal and Nash policies for p ¼ 0:3;c ¼ 2:5; d ¼ 5. Here, the
optimal policy is piece-wise linear where as the Nash equilibrium policy is lin-
ear. The Nash equilibrium policy defers more service than the optimal policy
for small x and vice-versa for large x.

2360 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 20,2022 at 12:34:00 UTC from IEEE Xplore.  Restrictions apply. 



We compare the optimal and Nash equilibrium policies in

Fig. 3. We also compare cost for optimal policy and Nash

equilibrium policy with various parameters in Fig. 4. It can be

observed that the cost gap between optimal cost and Nash

equilibrium increases with an increase in p (refer plots in

Fig. 4).

V. DISTINCT SERVICE REQUIREMENTS

A. Two Distinct Service Requirements With Markov Arrivals

Let us recall that we assumed i.i.d. job arrivals in Section II.

Now we assume that jobs arrive according to a Markov pro-

cess. We also assume that the service requirements can take

two distinct values, c1 and c2. We define c0 ¼ 0; a service

request c0 in a slot indicates no job arrival in that slot. The

transition probability matrix governing the Markov chain is a

3� 3 matrix with elements being pi;j; i; j 2 f0; 1; 2g. In other

words, if the current slot has an arrival ci; i 2 f0; 1; 2g, then
the arrival in next slot is cj with probability pi;j. As before,
each request can be met in at most two slots, i.e., a fraction of

the demand arriving in a slot could be deferred to the next

slot. We consider c2 > c1 without loss of generality. The

cost structure is similar to that in Section II.

We now describe state evolution and the optimal scheduling

problem. Let xk and vk be defined as in Section II. Let us also

redefine ek to be the demand in slot k. Clearly here, ek 2
fc0;c1;c2g and vk 2 ½0; ek�; 8k � 1. A scheduling policy

p ¼ ðpk; k � 1Þ is a sequence of functions pk :
fc0;c1;c2g � ½0;c2� ! ½0;c2� such that pkðek; xkÞ gives

differed service from slot k to slot kþ 1. Clearly, pkðek; xkÞ 2
½0; ek� and

xkþ1 ¼ pkðek; xkÞ ¼ ek � vk

The scheduling cost to be minimized is given by (1) in

Section II.

Again, we can obtain an equivalent shortest path formula-

tion of the problem as in Section III, we let ðek; xkÞ be the sys-
tem state at slot k and t be a special terminal state which is hit

if there is no new request in a slot. Let xkþ1 and ekþ1 also

denote the action and noise, respectively, in slot k(i.e., an
arrival of c0). Let ek ¼ ci, given state action tuple

ðek; xk; xkþ1Þ, the next state is ðc1; xkþ1Þ with probability pi;1,
ðc2; xkþ1Þ with probability pi;2 and t with probability

1� pi;1 � pi;2. The single stage cost before hitting the terminal

state is ðxk þ ek � xkþ1Þ2 þ dxk. Given the state-action pair

in slot k, ðek; xk; xkþ1Þ, the next state is the terminal state

with probability 1� pi;1 � pi;2 and the terminal cost is

xkþ1ðxkþ1 þ dÞ.
Let J : fc1;c2g � ½0;c2� ! Rþ be the optimal cost func-

tion for the problem. It is the solution of the following

Bellman’s equation: For all x 2 ½0;c2�; i 2 f1; 2g,

Jðci; xÞ ¼ min
u2½0;ci�

ðci � uþ xÞ2 þ dxþ pi;1Jðc1; uÞ
n

þpi;2Jðc2; uÞ þ ð1� pi;1 � pi;2Þuðuþ dÞ�:
Let us define the k-stage problem as in Section III and let

Jkð�; �Þ be the optimal cost function for this problem. Clearly,

J0ðci; xÞ ¼ min
u2½0;ci�

ðci � uþ xÞ2 þ dxþ uðuþ dÞ
n o

(14)

and

Jkðci; xÞ ¼ min
u2½0;ci�

ðci � uþ xÞ2 þ dxþ pi;1Jk�1ðc1; uÞ
n

�þpi;2Jk�1ðc2; uÞ þ ð1� pi;1 � pi;2Þuðuþ dÞ�
for k � 1. We express Jkðci; xÞ as

Jkðci; xÞ ¼ min
u2½0;ci�

fðci � uþ xÞ2 þ dxþ aiku
2 þ bikuþ ckg:

(15)

In the following, we observe that optimal controls for k-stage
problems, pkðci; xÞ; k � 0, are piecewise linear functions and
Jkðci; xÞ; k � 0 are piecewise quadratic functions. In particu-

lar for all k � 0, ½0;c2� is divided into intervals such that

ðaik; bikÞ assume different values in different intervals. We use

Ik to denote the total number of such intervals. We use xk (not

to be confused with xi in Section III) to represent the intervals:

xk;0 ¼ 0; xk;Ik ¼ c2 and xk;j; 0 < j < Ik are the cross-over

points. In order to obtain the optimal policy pðci; xÞ we itera-
tively compute pkðci; xÞ; k � 0.

1) Optimal Policy Computation: We start with computing

p0ðci; xÞ. For any k � 1, given pk�1ðci; xÞ, we first compute

xk, then we compute ðaik; bikÞ and then pkðci; xÞ. We now

illustrate this process for k ¼ 0; 1; 2. x0; a
i
0; b

i
0. From (14),

ai0 ¼ 1; bi0 ¼ d and ci0 ¼ 0; 8i 2 f1; 2g. These values remain

constant for all x 2 ½0;c2�. Here x0 ¼ f0;c2g. p0ðci; xÞ. The
solution to (14) is

p0ðci; xÞ ¼
2ðxþ ciÞ � bi0

2ð1þ ai0Þ
� �ci

0

:

Since, ½a20 ¼ 1 and b20 ¼ d, p0ðc2; xÞ < c2; 8x 2 ½0;c2�. On
the other hand p0ðc1; xÞ ¼ c1; 8x � a10c1 þ

b1
0
2 ; there will be

no such point in ½0;c2� if a10c1 þ b1
0
2 > c2. x1; a

i
1; b

i
1. The

optimal cost of 0-stage problem can be written as

Fig. 4. Average cost vs pending service, x for optimal and Nash policies. We
use p ¼ 0:3;c ¼ 2:5; d ¼ 5 for the left sub plot and p ¼ 0:9;c ¼ 2:5; d ¼ 5
for the right sub plot. Note that, the difference between the costs of the optimal
and Nash equilibrium policies increase with x. Also, the differences are high
for the higher value of p.
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J0ðc2; xÞ ¼

ðc2 þ xÞ2 þ dx; if x 2 ½0; x2
1;0�

a2
0

1þa2
0

x2 þ
	

2c2a
2
0
þb2

0

1þa2
0

þ d



x

þ a2
0
c2
2
þb2

0
c2�

ðb2
0
Þ2
4

ð1þa2
0
Þ þ c20; if x 2 ½x2

1;0;c2�

8>>>>><
>>>>>:

(16)

J0ðc1; xÞ ¼

ðc1 þ xÞ2 þ dx; if x 2 ½0; x1
1;0�

a1
0

1þa1
0

x2 þ
	

2c1a
1
0
þb1

0

1þa1
0

þ d



x

þ a1
0
c2
1
þb1

0
c1�

ðb1
0
Þ2
4

ð1þa1
0
Þ þ c10; if x 2 ½x1

1;0; x
1
1;1�

x2 þ dxþ c1ðc1 þ dÞ; if x 2 ½x1
1;1;c2�

8>>>>>>><
>>>>>>>:

(17)

where x2
1;0 ¼

b2
0
2 � c2; x

1
1;0 ¼

b1
0
2 � c1; x

1
1;1 ¼ a10c1 þ b1

0
2 . We

arrange fxi
1;j; i ¼ 1; 2; j � 0g in ascending order; note that the

order is x2
1;0 < x1

1;0 < x1
1;1. These points divide real line into

intervals. Using (16) and (17) in (15) with k ¼ 1, we obtain,

ai1 ¼

ai1;0 ¼ 1; if u 2 ½0; x2
1;0�

ai1;1 ¼ 1� pi;2

1þa2
0

; if u 2 ðx2
1;0; x

1
1;0�

ai1;2 ¼ 1� pi;1

1þa1
0

� pi;2

1þa2
0

; if u 2 ðx1
1;0; x

1
1;1�

ai1;3 ¼ 1� pi;2

1þa2
0

; if u 2 ðx1
1;1;c2�

8>>>>><
>>>>>:

bi1 ¼

bi1;0 ¼ 2ðpi;1c1 þ pi;2c2Þ þ d; if u 2 ½0; x2
1;0�

bi1;1 ¼
pi;2ð2a20c2þb2

0
Þ

1þa2
0

þ 2pi;1c1 þ d; if u 2 ðx2
1;0; x

1
1;0�

bi1;2 ¼
pi;2ð2a20c2þb2

0
Þ

1þa2
0

þ pi;1ð2a10c2þb1
0
Þ

1þa1
0

þd;

if u 2 ðx1
1;0; x

1
1;1�

bi1;3 ¼
pi;2ð2a20c2þb2

0
Þ

1þa2
0

þ d ; if u 2 ðx1
1;1;c2�

8>>>>>>>>><
>>>>>>>>>:

We now discard values in the above ordered sequence that

are not in ½0;c2� and add 0 and c2 to obtain sequence x1 ¼
fx1;j; 0 � j � I1g. Notice that each x1;j ðj < I1Þ has corre-

sponding ai1;j and bi1;j that determine the optimal action in the

interval ðx1;j; x1;jþ1� for every i 2 f1; 2g in p1ðci; xÞ.
p1ðci; xÞ. The solution to the 1-stage problem can be

written as

p1ðci; xÞ ¼
0; if x � xi

2;0

2ðxþciÞ�bi
1;j

2ð1þai
1;j

Þ

� �ci

; if x 2 ðxi
2;j; x

i
2;jþ1�

0 � j < I1

8>><
>>: (18)

where xi
2;j; j < I1 are given by

2ðxi
2;j þ ciÞ � bi1;j
2ð1þ ai1;jÞ

¼ x1;j;

and xi
2;I1

¼ c2.

The following lemma states that p1ðc2; xÞ < c2; 8x 2
½0;c2�, which implies that, if the current request is c2, it is not

entirely deferred to the next slot. We use this property in

deriving the optimal policy for 2-stage problem. We later

argue that the optimal policies for k-stage problems for all k
have this property.

Lemma 5.1: p1ðc2; xÞ < c2; 8x 2 ½0;c2�:
Proof: See Section I in supplementary material. &

x2; a
i
2; b

i
2 . We next investigate whether p1ðc1; xÞ ¼ c1 for

some x 2 ½0;c2�, i.e., whether fx : p1ðc1; xÞ ¼ c1g is non-

empty. If this set is non-empty we define x̂ to be the least

value in the set. Let x1
2;�l

be the largest value in fx1
2;j; j � 0g

smaller than x̂. We then set x1
2;�lþ1

¼ x̂, x1
2;�lþ2

¼ c2 and dis-

card x1
2;j; j > �lþ 2. From Lemma 5.1 p1ðc2; xÞ < c2; 8x 2

½0;c2�, so we leave the sequence fx2
2;j; j � 0g unchanged.

Next, we arrange xi
2;j; j � 0 in ascending order. As for the

case k ¼ 1, these ordered points divide real line in intervals.

For any two consecutive points xi
2;j and xi0

2;j0 . there exist

unique intervals ½x1
2;l; x

1
2;lþ1� and ½x2

2;m; x
2
2;mþ1� (we define

xi
2;�1 :¼ 0) containing ½xi

2;j; x
i0
2;j0 �.

ai2 ¼

1; if l ¼ �1;m ¼ �1

1� pi;2

1þa2
1;m

; if l ¼ �1;m � 0

1� pi;1

1þa1
1;l

� pi;2

1þa2
1;m

; if 0 � l � �l;m � 0

1� pi;2

1þa2
1;m

; if l ¼ �lþ 1;m � 0

8>>>>>><
>>>>>>:

b2 ¼

2ðpi;1c1 þ pi;2c2Þ þ d; if l ¼ �1;m ¼ �1
pi;2ð2a21;mc2þb2

1;m
Þ

1þa2
1;m

þ 2pi;1c1 þ d; if l ¼ �1;m � 0

pi;2ð2a21;mc2þb2
1;m

Þ
1þa2

1;m

þ pi;1ð2a11;mc2þb1
1;m

Þ
1þa1

1;m

þ d;

if 0 � l � �l;m � 0
pi;2ð2a21;mc2þb2

1;m
Þ

1þa2
1;m

þ d; if l ¼ �lþ 1;m � 0

8>>>>>>>>><
>>>>>>>>>:

We again discard values in the above ordered sequence that are

not in ½0;c2� and add 0 and c2 to obtain another ordered

sequence x2 ¼ fx2;j; 0 � j � I2g. For illustration, we show

x1; x2;p0 and p1 for an example with i.i.d. arrivals in Fig. 5.

Next, we determine the solution to the 2-stage problem,

p2ðci; xÞ; i ¼ 1; 2. We continue this iterative process for k � 3.
We can stop at a k � 1 if ðxk; a

i
k; b

i
kÞ are identical to

ðxk�1; a
i
k�1; b

i
k�1Þ. The limiting policy, pkðci; xÞ; i ¼ 1; 2, is

the desired optimal policy. We formalize this process in Algo-

rithm 1. We find that pkðci; xÞ; i ¼ 1; 2 gets closer to the opti-

mal policy as k increases. So, to obtain an approximately

optimal policy, we can stop at a sufficiently large k. We illustrate

optimal policies for two examples with i.i.d. arrivals in Fig. 6.
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B. Computational Complexity of Algorithm 1

Algorithm 1 is an iterative algorithm that iteratively calcu-

lates ðxk; a
i
k; b

i
kÞ; k � 0, where ðxk; a

i
k; b

i
kÞ characterize the

piece-wise linear optimal policy of the k-stage problem.

Recall that Ik; k ¼ 0; 1; . . . denote the maximum number of

line segments in the optimal policy of the k�stage problem.

Note that I0 ¼ 2 and, for k � 1,

Ik � 2ðIk�1 þ 1Þ:
We get an inequality as “order” function may remove a few

values that are outside ½0;c2�. We thus see that

Ik �
Xkþ1

i¼1

2i; (19)

for all k � 0. In k-th iteration of the algorithm OðIk�1Þ com-

putation is needed obtain xk, and further OðIkÞ computation is

needed to obtain aik and bik. So, if we run the algorithm for K
iterations (see Algorithm 1 for the stopping criteria), then the

complexity is OðPK
k¼1ðIk�1 þ IkÞÞ. Consequently, using (19),

the worst case computational complexity of the algorithm

Oð2Kþ1Þ. If instead of two we have N distinct service

Algorithm 1. (Two Distinct Arrivals)

Input: p1;1; p1;2; p2;1; p2;2;c1;c2; d
ain;�1 ¼ 1; bin;�1 ¼ 0 8n � 0; i 2 f1; 2g
n ¼ 0
x0;0 ¼ 0; x0;1 ¼ c2; I0 ¼ 1
ai0;0 ¼ 1; bi0;0 ¼ d; i 2 f1; 2g
do

n ¼ nþ 1
for i ¼ 1 : 2 do
for j ¼ 0 : In�1 � 1 do

xin;j ¼
2ð1þ ain�1;jÞxn�1;j þ bin�1;j

2
� ci

end for

end for

�l ¼ maxfj : xn�1;j < c1g

x1
n;�lþ1 ¼

2ð1þ a1
n�1;�l

Þc1 þ b1
n�1;�l

2
� c1

ðxn;0; . . . ; xn;InÞ ¼
orderðx1

n;0; . . . ; x
1
n;�lþ1; x

2
n;0; . . . ; x

2
n;In�1�1; 0;c2Þ

"This function removes the values outside ½0;c2� and puts the

remaining in ascending order.

for j ¼ 0 : In � 1 do
for i ¼ 1 : 2 do

ji ¼ �1; if xi
n;0 > xn;j

maxfl : xi
n;l � xn;jg; otherwise

�

end for

for i ¼ 1 : 2 do

ain;j ¼1� pi;1
1þ a1n�1;j1

1fj1��lg �
pi;2

1þ a2n�1;j2

bin;j ¼
pi;1ð2c1a

1
n�1;j1

þ b1n�1;j1
Þ

1þ a1n�1;j1

1fj1��lg

þ pi;2ð2c2a
2
n�1;j2

þ b2n�1;j2
Þ

1þ a2n�1;j2

þ d

end for

end for

do whileðxn; a
j
n; b

j
nÞ 6¼ ðxn�1; a

j
n�1; b

j
n�1Þ; 8j 2 f1; 2g

Output

pðci; xÞ ¼
0; if x � xi

n;0

2ðxþciÞ�bi
n;j

2ð1þai
n;j

Þ

� �ci

; if x 2 ðxi
n;j; x

i
n;jþ1�

0 � j < In

8>><
>>:

Fig. 5. Illustration of optimal policy for 0-stage and 1-stage problem with
i.i.d. arrivals. p0ðci; xÞ vs x and p1ðci; xÞ vs x for p1 ¼ 0:8; p2 ¼ 0:05;c1 ¼
3;c2 ¼ 5 and d ¼ 0:5. Note that x21;0; x

1
1;0; x

2
2;0; x

1
2;0 are negative. Hence x1 ¼f0; x11;1;c2g and x2 ¼ f0; x22;1; x12;1;c2g.

Fig. 6. Illustration of optimal policies for i.i.d arrivals. We use p1 ¼
0:8; p2 ¼ 0:05;c1 ¼ 3;c2 ¼ 5. d ¼ 0:5 for the upper sub-plot and d ¼ 5 for
the lower sub-plot.
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requirements then the computation complexity increases to

OðN2Kþ1Þ.
In view of the exponential complexity of Algorithm 1,

we propose an approximate policy in Section V-C1 and

also provide its performance bound. The computational

complexity of this approximate policy is OðNKÞ for N
distinct arrivals case.

C. General Service Requirements

We now further extend the system model in Section V-A to

allow more than two distinct job sizes. We assume that, in

each slot an agent with demand ci (i ¼ 1; 2; . . . ; N) arrives

with probability pi and there is no arrival with probability 1�
�p where �p :¼PN

i¼1 pi. Without loss of generality we assume

that cis are monotonically increasing.

Let us see the stochastic shortest path formulation of this

problem. Let J : fc1; . . . ;cNg � ½0;cN � ! Rþ be the opti-

mal cost function and p : fc1; . . . ;cNg � ½0;cN � ! ½0;cN �
be the optimal policy for the problem (pðci; �Þ 2 ½0;ci� for all
i). The optimal cost function is solution of the following

Bellman’s equation: For all x 2 ½0;cN �; i 2 f1; 2; ::; Ng,

Jðci; xÞ ¼ min
u2½0;ci�

(
ðci � uþ xÞ2 þ dxþ

XN
j¼1

pjJðcj; uÞ

þ ð1� �pÞuðuþ dÞ
)

Let us also define the k-stage problems with Jkð�; �Þs being the

optimal cost functions and pkð�; �Þs being the optimal controls

as in Section III. Clearly,

J0ðci; xÞ ¼ min
u2½0;ci�

ðci � uþ xÞ2 þ dxþ uðuþ dÞ
n o

(20)

and

Jkðci; xÞ ¼ min
u2½0;ci�

(
ðci � uþ xÞ2 þ dx

þ
XN
j¼1

pjJk�1ðcj; uÞ þ ð1� �pÞuðuþ dÞ
)
:

(21)

for k � 1. The following lemma shows that the optimal cost is

a convex increasing function in both of its arguments. We use

convexity of the optimal cost in Lemma 5.3 to derive a lower

bound on it.

Lemma 5.2: For all k � 0; Jkðci; xÞ is convex in both its

arguments.

Proof: The proof follows exactly same arguments as the

proof of Theorem 3.2. &

As in Section V-A, we can iteratively obtain pkð�; �Þ; k � 0,
yielding pð�; �Þ. In other words, we can extend the arguments

in Section V-A and Algorithm 1 for handling any finite num-

ber of distinct job sizes. As the Algorithm 1 is of exponential

complexity, instead, we propose a closed form approximate

policy �pð�; �Þ and also derive its performance bound.

1) An Approximately Optimal Policy: Let us define �c :¼
ðPN

j¼1 pjcjÞ=�p and consider a fictitious problem wherein an

agent with demand �c arrives with probability �p and there is no
arrival with probability 1� �p. The optimal cost function for

this fictitious problem, J 0ð�Þ, is solution of the following

Bellman’s equation.

J 0ðxÞ ¼ min
u2½0;�c�

ð�c� uþ xÞ2 þ dx
n

þ �pJ 0ð�c; uÞ

þð1� �pÞuðuþ dÞg
Moreover, following Theorem 3.1, the optimal policy for this

problem, say p0ð�Þ, is: If d � 2�cð1� �pÞ,

p0ðxÞ ¼ xþ �c� b1
2

ð1þ a1Þ :

else

p0ðxÞ ¼
0; if x 2 ½0; x0�
2ðxþ�cÞ�b�

l
2ð1þa�

l
Þ ; if x 2 ½xl; xlþ1�; l ¼ 0; . . . ;K � 1

2ðxþ�cÞ�b�
K

2ð1þa�
K
Þ ; if x 2 ½xK; �c�;

8>><
>>:

where a�i s, b
�
i s and xis are as in (5), (6) and (7), respectively,

with c and p replaced by �c and �p, respectively. Also, a1 ¼
limi!1 a�i , b1 ¼ limi!1 b�i and K ¼ minfk : xkþ1 > �cg.
Our approximate policy for general service requirements is

motivated by p0ð�Þ. Notice that the cost function J 0ð�Þ and the

policy p0ð�Þ implicitly assume that all the agents have demand
�c (p0ð�Þ 2 ½0; �c�). But, motivated by J 0ð�Þ, we can define func-
tions

J 0ðci; xÞ ¼ min
u2½0;ci�

ðci � uþ xÞ2 þ dx
n

þ �pJ 0ðuÞ

þð1� �pÞuðuþ dÞg
for all i ¼ 1; . . . ; N; x 2 ½0;cN �. The optimal actions in the

above expressions, �pðci; xÞ, are: For i ¼ 1; . . . ; N ,

(1) if d � 2�cð1� �pÞ,

�pðci; xÞ ¼
xþ ci � b1

2

ð1þ a1Þ

" #ci

0

;

(2) if 2�cð1� �pÞ < d,

�pðci; xÞ ¼

2ðxþciÞ�b�
0

2ð1þa�
0
Þ

h ici

0
; if x 2 ½0; x1�;

2ðxþciÞ�b�
l

2ð1þa�
l
Þ

h ici

0
; if x 2 ½xl; xlþ1�;

l ¼ 1; . . . ; K � 1
2ðxþciÞ�b�

K
2ð1þa�

K
Þ

h ici

0
; if x 2 ½xK;cN �;

8>>>>>><
>>>>>>:

whereK ¼ minfk : xkþ1 > cNg.
We propose to use �pð�; �Þ as an approximate policy for our
problem.
2) Performance Bound: Let �J : fc1; . . . ;cNg � ½0;cN � ! Rþ

be the cost function of the policy �pð�; �Þ. It satisfies the fixed
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point equation

�Jðci; xÞ ¼ ðci � �pðci; xÞ þ xÞ2 þ dxþ
XN
l¼1

pl �Jðcl; �pðci; xÞÞ

þ ð1� �pÞ�pðci; xÞð�pðci; xÞ þ dÞ:

We would like to bind �J � J . But we have not been able to

assess the optimal cost function J . We instead show that

J 0ð�; �Þ is a lower bound on Jð�; �Þ and bind �J � J 0.
Lemma 5.3: For all i ¼ 1; . . . ; N; x 2 ½0;cN �,

�Jðci; xÞ � Jðci; xÞ � J 0ðci; xÞ

Proof: See Section J in supplementary material. &

Lemma 5.2 immediately implies that

�Jðci; xÞ � Jðci; xÞ � �Jðci; xÞ � J 0ðci; xÞ:
We now focus on binding �J � J 0. Let us define

D :¼
X
j

pjjcj � �cj; (22Þ

B :¼
X
j

pjðcj � �cÞ2; (23Þ

and A :¼
X

j:cj < �c

pjð�c� cjÞð2cN þ cj � �cÞ: (24Þ

Following is the desired bound.

Theorem 5.1: For all i ¼ 1; . . . ; N; x 2 ½0;cN �,

�Jðci; xÞ � J 0ðci; xÞ �
Aþ Bþ �cD

1� �p
:

Proof: See Appendix B-A. &

Remark 5.1:

(1) Note that B andD are measures of variability of the ser-

vice requests. Moreover, A also depends on variability

of the service requests. All these parameters reduce to 0

for single service requirement problem of Section III.

This is expected as the approximately optimal policy is

identical to the optimal policy in this special case.

(2) Note that the bound on �Jðci; xÞ � J 0ðci; xÞ diverges as
�p approaches 1. But the time-averaged scheduling cost

of any policy is �pð1� �pÞPN
i¼1 piJðci; xÞ (see the first

paragraph of Section III). Hence the time-averaged ser-

vice cost of policy �pð�; �Þ exceeds the optimal time aver-

aged service cost by at most ðAþ Bþ �cDÞ�p2. From
the previous remark, this quantity reduces as variability

of the service requests reduces.

We illustrate the average optimal costs, their lower bounds

and the average costs of the approximate policies for two

examples in Fig. 7. Here we keep c1 fixed and vary c2 from

c1 to 10c1. We observe the costs of using the optimal policy

and approximate policy are close for smaller values of c2. For

larger values of c2 also, the bound suggested by Theorem 5.1

is pretty loose and the actual costs of the approximate policy

are much lower.

VI. TUNING SYSTEM PARAMETERS

Given the parameters c; p and d, optimal scheduling results

in certain maximum offered service per slot, average service

cost, and average deferred service. The service provider may

want to regulate each of these. For instance, it may want to

limit the maximum amount of service in any slot owing to

practical considerations or keep the average deferred service

to a prescribed value. It can achieve these goals by suitably

tuning d, the waiting cost per unit service. For instance,

increasing d may lower the average deferred service.

In the non-cooperative game paradigm, the agents dictate

the amount of service they should receive based on their

respective service and waiting costs. Expectedly, the aggre-

gate service and waiting costs in the non-cooperative setting

are higher than those in the optimal scheduling scenario. How-

ever, the service provider can attain optimal service cost and

average delay by tuning a few parameters, as is widely done.

For instance, the authors in [27] propose a punishment mecha-

nism to enhance trust and cooperative behavior among the

agents. In [28], they model cluster identification in an e-com-

merce system as a Stackelberg game in which a leader group

tunes the payoff functions to elicit cluster information from

the followers.

In our formulation, the service provider can also scale the

service costs, say by c, or offer incentives for deferring the ser-
vice, say d per unit of service, or can do both to induce desired

service deferral behavior by the agents. In particular, exercis-

ing both the above options makes the effective waiting cost

per unit of service
ðd�dÞ

c . The service providers can suitably

choose c and d, attaining optimal service and waiting costs.

VII. CONCLUSION

We studied service scheduling in slotted systems with Ber-

noulli request arrivals, quadratic service costs, linear waiting

costs, and service delay guarantee of two slots. We derived

optimal policy in closed form in case of requests with identical

service requirements in Theorem 3.1. In competing requests,

all with identical service requirements, we also gave a sym-

metric Nash equilibrium. We gave an algorithm (Algorithm 1)

to compute the optimal policy in the case of Markov arrivals

Fig. 7. Optimal average costs, their lower bounds and the costs of approxi-
mate policies for two examples. For both the examples, we fix c1 ¼ 3; p1 ¼
0:4; p2 ¼ 0:5 and vary c2 from c1 to 10c1. We consider d ¼ 1 for the first
example (left sub-plot) and d ¼ 150 for the second example (right sub-plot).
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with two different service requirements. We proposed an

approximate policy for general service requirements and

derived its performance bound.

We consider that all the jobs have same maximum allowed

sojourn time of two slots which is quite restrictive. Allowing

arbitrary limits on sojourn times requires us to keep track of

service requirements with diffident deadlines in each slot.

This leads to the so called curse of dimensionality. We leave

this extension for our future work. Our future work also entails

examining service scheduling problems with convex, but not

necessarily quadratic, service costs. We would also like to

consider scenario with arbitrary job arrivals, service require-

ments and permissible sojourn times, i.e., where statistics of

these variables are unknown.

VIII. APPENDIX A

A. Proof of Theorem 3.1

Let us first recall the notions of k-stage problems and

k-stage optimal cost functions Jk. For all k � 0, we will

express Jk as

JkðxÞ ¼ min
u2½0;c�

ðc� uþ xÞ2 þ dxþ aku
2 þ bkuþ ck

n o
: (25)

Comparing with (3), a0 ¼ 1; b0 ¼ d; c0 ¼ 0. For k � 1, we

consider the following two cases separately.

ðaÞ 2cð1� pÞ � d: We iteratively show that bk � 2c for all

k � 0. For k ¼ 0, b0 � 2cð1� pÞ � 2c, so the claim trivially

holds. Assume that it holds for some k � 0. Considering the

form of Jk in (25), the optimal policy for the k-stage problem

pkðxÞ ¼ min max
2ðxþ cÞ � bk
2ð1þ akÞ ; 0

� �
;c

� �
: (26)

We need the following lemma (for proof see Section E in the

supplementary material).

Lemma A.-A.1: If d � 2cð1� pÞ then,pkðxÞ < c; 8k � 0.
Using Lemma A-A.1, (26) can be written as

pkðxÞ ¼ max
2ðxþ cÞ � bk
2ð1þ akÞ ; 0

� �
;

and hence

JkðxÞ ¼
ð2akðxþcÞþbk

2ð1þakÞ Þ2 þ dxþ akð2ðxþcÞ�bk
2ð1þakÞ Þ2

þbkð2ðxþcÞ�bk
2ð1þakÞ Þ þ ck; if 2ðxþ cÞ > bk

ðcþ xÞ2 þ dxþ ck; otherwise.

8><
>:

Therefore, using (4),

akþ1 ¼
akþ1;0 ¼ 1; if 2ðuþ cÞ � bk
akþ1;1 ¼ 1� p

akþ1 ; otherwise

�
(27)

bkþ1 ¼
bkþ1;0 ¼ 2pcþ d; if 2ðuþ cÞ � bk

bkþ1;1 ¼ pð2akcþbkÞ
1þak

þ d; otherwise.

(
(28)

Since we have assumed bk � 2c, akþ1 and bkþ1 only assume

values akþ1;1 and bkþ1;1, respectively. Further, using exactly

same argument as in the proof of Lemma 3.2ðcÞ, bkþ1 �
2pcþ d � 2c. Thus, we can conclude by induction that bk �
2c for all k � 0. We can now see the following.

ak ! a1 as k ! 1: For this observe that the sequence

ak; k � 0 is identical to the sequence a�k; k � 0 in

Lemma 3.2ðaÞ (see (27)).
bk ! b�1 as k ! 1: Observe that b0 ¼ d 6¼ b�0 but for all

k � 1, bk depends on bk�1 in exactly same way in which b�k
depends on b�k�1 (see (28)). Hence the claim holds following

the proof of Lemma 3.2ðbÞ.
Further, b1 < 2c from Lemma 3.2ðcÞ and

xþc�b1
2

ð1þa1Þ < c

for all 0 � x � c from Lemma 3.3. Hence, the optimal policy

is as in Theorem 3.1ðaÞ.
ðbÞ 2cð1� pÞ < d: Let us first recall bk;1; k � 1, defined

earlier (see (28)). Define �k ¼ minfk : bk;1 > 2cg. From

Lemma 3.2ðdÞ, limk!1 bk;1 ¼ b1 > 2c. Hence �k < 1.

Clearly, in this case also, ak and bk assume unique values for

all k � �k; a0 ¼ 1; b0 ¼ d and ak ¼ ak;1; bk ¼ bk;1 for 1 � k �
�k. But

p�kðxÞ ¼
0; if x 2 ½0; x0

0�
2ðxþcÞ�b�k
2ð1þa�kÞ ; if x 2 ½x0

0;c�

(

where x0
0 ¼ b�k

2 � c. Notice that

b�k ¼
pð2a�k�1cþ b�k�1Þ

1þ a�k�1

þ d � 2pcþ d ¼ b�0:

Hence x0 > x0
0. So, if x

0
0 > c, the case x 2 ½x0

0;c� does not
arise, and the desired result is obtained. But, if x0

0 � c, p�kðxÞ
is a piecewise linear function and J�kðxÞ is a piecewise qua-

dratic function. Moreover,

p�kþ1ðxÞ ¼ arg min
u2½0;c�

ðc� uþ xÞ2 þ dxþ a�kþ1u
2

n
þb�kþ1uþ c�kþ1

�
;

where

a�kþ1 ¼
a�kþ1;0 ¼ a�0; if u � x0

0

a�kþ1;1 ¼ 1� p
a�kþ1 ; otherwise,

�

b�kþ1 ¼
b�kþ1;0 ¼ b�0; if u � x0

0

b�kþ1;1 ¼ pð2a�kcþb�kÞ
1þa�k

þ d; otherwise.

(
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We now argue that

p�kþ1ðxÞ ¼
0; if x 2 ½0; x0�
2ðxþcÞ�b�

0
2ð1þa�

0
Þ ; if x 2 ½x0; x

0
1�

2ðxþcÞ�b�kþ1;1

2ð1þa�kþ1;1Þ ; if x 2 ½x0
1;c�

8>><
>>:

where x0 is as in (7) and x0
1 ¼

2ð1þa�kþ1;1Þx00þb�kþ1;1

2 � c. It suffi-

ces to show that

2ðxþ cÞ � b�0
2ð1þ a�0Þ

����
x¼x0

¼ 0 (29Þ

and
2ðxþ cÞ � b�0
2ð1þ a�0Þ

����
x¼x0

1

¼ 2ðxþ cÞ � b�kþ1;1

2ð1þ a�kþ1;1Þ

�����
x¼x0

1

¼ x0
0: (30Þ

Note that (29) follows from the definition of x0 and equality of

the last two terms in (30) follows from the definitions of x0; x
0
0

and x0
1. Equality of the first two terms in (30) is equivalent to

2x0
0ð1þ a�kþ1;1Þ þ b�kþ1;1 ¼ 2x0

0ð1þ a�0Þ þ b�0;

or, b�kþ1;1 � b�0 ¼ 2x0
0ða�0 � a�kþ1;1Þ;

which also clearly holds from definitions of a�0; b
�
0 and x0

0. Fur-

ther, (30) implies that x0 < x0
1 < x1 (see the definitions of

x0 and x1). If x
0
1 > c, then the case x 2 ½x0

1;c� does not arise,
and again the desired result is obtained.

Now let the optimal policy for the �kþ j-stage problem be

p�kþjðxÞ ¼

0; if x 2 ½0; x0�
2ðxþcÞ�b�

l
2ð1þa�

l
Þ ; if x 2 ½xl; x1þ1�;

l ¼ 0; . . . ; j� 2
2ðxþcÞ�b�

j�1

2ð1þa�
j�1

Þ ; if x 2 ½xj�1; x
0
j�

2ðxþcÞ�b�kþj;j

2ð1þa�kþj;jÞ ; if x 2 ½x0
j;c�

8>>>>>>><
>>>>>>>:

where

2ðxj�1 þ cÞ � b�j�2

2ð1þ a�j�2Þ
¼ 2ðxj�1 þ cÞ � b�j�1

2ð1þ a�j�1Þ
¼ xj�2 (31Þ

2ðx0
j þ cÞ � b�j�1

2ð1þ a�j�1Þ
¼ 2ðx0

j þ cÞ � b�kþj;j

2ð1þ a�kþj;jÞ
¼ x0

j�1; (32Þ

and xj�1 < x0
j < xj. If x

0
j > c, we readily have the desired

result.5If x0
j � c, we can follow similar arguments as above to

show that

p�kþjþ1ðxÞ ¼

0; if x 2 ½0; x0�
2ðxþcÞ�b�

l
2ð1þa�

l
Þ ; if x 2 ½xl; xlþ1�;

l ¼ 0; . . . ; j� 1
2ðxþcÞ�b�j
2ð1þa�

j
Þ ; if x 2 ½xj; x

0
jþ1�

2ðxþcÞ�b�kþjþ1;jþ1

2ð1þa�kþjþ1;jþ1Þ ; if 2 ½x0
jþ1;c�

8>>>>>>><
>>>>>>>:

where

a�kþjþ1;jþ1 ¼ 1� p

a�kþj;j

;

b�kþjþ1;jþ1 ¼
pð2a�kþj;jcþ b�kþj;jÞ

1þ a�kþj;j

þ d;

and x0
jþ1 ¼

2ð1þ a�kþjþ1;jþ1Þx0
j þ b�kþjþ1;jþ1

2
� c:

Indeed it suffices to show that

2ðxþ cÞ � b�j�1

2ð1þ a�j�1Þ

�����
x¼xj

¼ 2ðxþ cÞ � b�j
2ð1þ a�jÞ

�����
x¼xj

¼ xj�1: (33)

and

2ðxþ cÞ � b�j
2ð1þ a�jÞ

�����
x¼x0

jþ1

¼ 2ðxþ cÞ � b�kþjþ1;jþ1

2ð1þ a�kþjþ1;jþ1Þ

�����
x¼x0

jþ1

¼ x0
j:

(34)

Equality of the last two terms in (33) follows from the defini-

tion of xj. Then, equality of the first two terms is equivalent to

2xj�1ða�j�1 � a�jÞ ¼ b�j � b�j�1;

or 2xj�1
1

1þ a�j�1

� 1

1þ a�j�2

 !

¼ 2a�j�1’þ b�j�1

1þ a�j�1

� 2a�j�2’þ b�j�2

1þ a�j�2

;

or 2xj�1ða�j�2 � a�j�1Þ ¼2’ða�j�1 � a�j�2Þ þ ð1þ a�j�2Þb�j�1

� ð1þ a�j�1Þb�j�2;

or

2ðxj�1 þ ’Þða�j�2 � a�j�1Þ ¼ ð1þ a�j�2Þb�j�1 � ð1þ a�j�1Þb�j�2;

or

ð2ð1þ a�j�1Þxj�2 þ b�j�1Þa�j�2 � ð2ð1þ a�j�2Þxj�2 þ b�j�2Þ
a�j�1 ¼ð1þ a�j�2Þb�j�1 � ð1þ a�j�1Þb�j�2;

(35)

or

2xj�2ða�j�2 � a�j�1Þ ¼ b�j�1 � b�j�2; (36)

where we arrive at (35) using (31). Furthermore, (36) also fol-

lows from (31). Similarly, in (34), equality of the last two

terms follows from the definition of x0
jþ1, and equality of the

first two terms can be shown using (32) and following similar5 In this caseK is j� 2 if xj�1 > c and j� 1 if xj�1 � c.
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steps as above. Moreover, (33) and (34) imply that

xj < x0
jþ1 < xjþ1 (see the definition of xjþ1). If x

0
jþ1 > c,

the policy p�kþjþ1ð�Þ is the desired optimal policy. We need to

continue the above iteration up to the least j such that x0
j >

c; this j equals K þ 2 if xj�1 > c and K þ 1 if

xj�1 � c < xj.

Finally, observe that the so obtained policy is a piecewise

linear function with progressively increasing slopes,

0; 1
1þa�

0
; . . . ; 1

1þa�
K
. All these slopes are less than 1 implying

that 0 � p�kþjðxÞ < c for all j � 0 and x 2 ½0;c�. Hence the
optimal policy is as claimed in Theorem 3.1ðbÞ.

B. Proof of Theorem 3.2

We inductively show that JkðxÞ; k � 0 are convex and

increasing. Let us first define functions Qk : ½0;c� � ½0;c� !
Rþ, k � 0 as follows:

Q0ðx; uÞ ¼ ðc� uþ xÞ2 þ dxþ uðuþ dÞ;

and for all k � 1,

Qkðx; uÞ ¼ ðc� uþ xÞ2 þ dxþ pJk�1ðuÞ
þ ð1� pÞuðuþ dÞ:

Clearly,

JkðxÞ ¼ min
u2½0;c�

Qkðx; uÞ:

for all k � 0. All the three terms in Q0ðx; uÞ are

convex (see [29, Section 3.2.2] for convexity of the first term).

Therefore, Q0ðx; uÞ is convex in both its arguments. As partial

minimization preserves convexity [29, Section 3.2.5], J0ðxÞ is
also convex. Since Q0ðx; uÞ is increasing in x, so is J0ðxÞ.

Let us now assume that JkðxÞ is convex for some k � 0.
Then Qkþ1ðx; uÞ is convex in both its argument and increasing

in x, and following the earlier arguments, Jkþ1ðxÞ is also con-

vex and increasing. This completes the induction step. We

thus see that, for all k � 0, JkðxÞ are convex and increasing.

As limits of convex and increasing functions are convex and

increasing (see [30, Theorem 10.8] for convexity), JðxÞ is

also convex and increasing.

XI. APPENDIX B

A. Proof of Theorem 5.1

Let us consider k-stage problems that allow at most kþ 1
service requests (similar to those defined in earlier sections).

Let �Jkð�; �Þ; k � 0 be the cost functions of these problems on

application of policies �pkð�; �Þ. For brevity, we use following

notation in rest of the proof:

xi
k :¼ �pkðci; xÞ 8i; k and x:

Then

�J0ðci; xÞ ¼ ðci � xi
0 þ xÞ2 þ dxþ xi

0ðxi
0 þ dÞ (37)

and for all k � 1,

�Jkðci; xÞ ¼ ðci � xi
k þ xÞ2 þ dxþ

XN
j¼1

pj �Jk�1ðcj; x
i
kÞ

þ ð1� �pÞxi
kðxi

k þ dÞ: (38)

Notice that limk!1 �Jkðci; xÞ ¼ �Jðci; xÞ for all i and x 2
½0;cN �. Also, for all x 2 ½0;cN �, J 0

0ðci; xÞ ¼ J0ðci; xÞ and

for k � 1,

J 0
kðci; xÞ ¼ min

u2½0;ci�
fðci � uþ xÞ2 þ dxþ �pJ 0

k�1ðuÞ:

þð1� �pÞuðuþ dÞg; (39Þ

where J 0
kð�Þ; k � 0 are the optimal cost functions associated

with k-stage versions of the fictitious problem introduced in

Section V-C1. We inductively derive bounds for �Jkðci; xÞ �
J 0
kðci; xÞ for all k � 1. We then take k ! 1 to obtain a

bound on �Jðci; xÞ � J 0ðci; xÞ.
To begin with,

�J1ðci; xÞ � J 0
1ðci; xÞ

¼
XN
j¼1

pj �J0ðcj; x
i
1Þ � J 0

0ðxi
1Þ

 �

¼
XN
j¼1

pj J 0
0ðcj; x

i
1Þ � J 0

0ðxi
1Þ

 �

¼
XN
j¼1

pj min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ dxi

1 þ uðuþ dÞ
n o"

� min
u2½0;�c�

ð�c� uþ xi
1Þ2 þ dxi

1 þ uðuþ dÞ
n o�

¼
XN
j¼1

pj min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o"

� min
u2½0;�c�

ð�c� uþ xi
1Þ2 þ uðuþ dÞ

n o�
¼ E1 þ E2;

where

E1 :¼
XN
j¼1

pj min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o"

� min
u2½0;�c�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o�
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and

E2 :¼
XN
j¼1

pj min
u2½0;�c�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o�

� min
u2½0;�c�

ð�c� uþ xi
1Þ2 þ uðuþ dÞ

n o�
:

The first equality follows from (39) and (38) whereas the sec-

ond one follows since �J0ð�; �Þ ¼ J 0
0ð�; �Þ. We now bind E1 and

E2 separately.

Upper bound on E1: For all j such that cj � �c,

min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o
� min

u2½0;�c�
ðcj � uþ xi

1Þ2 þ uðuþ dÞ
n o

� 0: (40)

For all j such that cj < �c, ðaÞ if �p0ðcj; x
i
1Þ < cj then

min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o
� min

u2½0;�c�
ðcj � uþ xi

1Þ2 þ uðuþ dÞ
n o

¼ 0: (41)

ðbÞ if �p0ðcj; x
i
1Þ ¼ cj then

min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o
¼ xi

1

2 þ cjðcj þ dÞ

and

min
u2½0;�c�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o
� ðcj þ xi

1 � �cÞ2 þ cjðcj þ dÞ:
Hence

min
u2½0;cj�

ðcj � uþ xi
1Þ2 þ uðuþ dÞ

n o
� min

u2½0;�c�
ðcj � uþ xi

1Þ2 þ uðuþ dÞ
n o

� ð�c� cjÞð2xi
1 þ cj � �cÞ: (42)

Combining (40), (41) and (42) and observing that xi
1 � cN we

see that E1 � A where A is as in (24).

Upper bound on E2: Notice that

E2 ¼
XN
j¼1

pj min
u2½0;�c�

ð�c� uþ xi
1Þ2 þ uðuþ dÞ

n�

þðcj � uþ xi
1Þ2 � ð�c� uþ xi

1Þ2
o

� min
u2½0;�c�

ð�c� uþ xi
1Þ2 þ uðuþ dÞ

n o�

�
XN
j¼1

pj max
u2½0;�c�

ðcj � uþ xi
1Þ2 � ð�c� uþ xi

1Þ2
n o� �

:

Further, for all j such that cj � �c, ðcj � uþ xi
1Þ2 � ð�c�

uþ xi
1Þ2 is decreasing in u, implying that

max
u2½0;�c�

ðcj � uþ xi
1Þ2 � ð�c� uþ xi

1Þ2
n o
¼ ðcj þ xi

1Þ2 � ð�cþ xi
1Þ2

¼ ðcj � �cÞðcj þ �cþ 2xi
1Þ: (43)

For all j such that cj < �c, ðcj � uþ xi
1Þ2 � ð�c� uþ xi

1Þ2
is increasing in u, implying that

max
u2½0;�c�

ðcj � uþ xi
1Þ2 � ð�c� uþ xi

1Þ2
n o
¼ ðcj � �cþ xi

1Þ2 � xi
1

2

¼ ðcj � �cÞðcj � �cþ 2xi
1Þ: (44)

Combining (43) and (44) we see that

E2 �
X

j:cj��c

pjðcj � �cÞðcj þ �cþ 2xi
1Þ

þ
X

j:cj < �c

pjðcj � �cÞðcj � �cþ 2xi
1Þ

¼
XN
j¼1

pjcjðcj � �cÞ þ �c
XN
j¼1

pjjcj � �cj

¼
XN
j¼1

pjðcj � �cÞ2 þ �c
XN
j¼1

pjjcj � �cj

¼Bþ �cD;

where D and B are as defined in (22) and (23), respectively.

Combining the bounds on E1 and E2 we obtain

�J1ðci; xÞ � J 0
1ðci; xÞ � Aþ Bþ �cD:

We prove via induction that

�Jkðci; xÞ � J 0
kðci; xÞ �

Xk�1

l¼0

�plðAþ Bþ �cDÞ: (45)

for all k � 1. We have already shown that (45) holds k ¼ 1.
Let us assume that it holds for some k � 1. Then

�Jkþ1ðci; xÞ � J 0
kþ1ðci; xÞ

¼
XN
j¼1

pj �Jkðcj; x
i
kþ1Þ � J 0

kðxi
kþ1Þ

 �

¼
XN
j¼1

pj �Jkðcj; x
i
kþ1Þ � J 0

kðcj; x
i
kþ1Þ

 �

þ
XN
j¼1

pj J 0
kðcj; x

i
kþ1Þ � J 0

kðxi
kþ1Þ

 �
;

where, as before, the first equality follows from (39) and (38).

Now using induction hypothesis,
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XN
j¼1

pj �Jkðcj; x
i
kþ1Þ � J 0

kðcj; x
i
kþ1Þ

 �

� �p
Xk�1

l¼0

�plðAþ Bþ �cDÞ

¼
Xk
l¼1

�plðAþ Bþ �cDÞ: (46)

On the other hand, using similar arguments as for bounding

XN
j¼1

pj J 0
0ðcj; x

i
1Þ � J 0

0ðxi
1Þ

 �

we can see that (we also use the fact that J 0
k�1ðuÞ is increasing

in u)

XN
j¼1

pj J 0
kðcj; x

i
kþ1Þ � J 0

kðxi
kþ1Þ

 � � Aþ Bþ �cD: (47)

Combining (46) and (47) we obtain

�Jkþ1ðci; xÞ � J 0
kþ1ðci; xÞ �

Xk
l¼0

�plðAþ Bþ �cDÞ;

which completes the induction step. We thus establish (45) for

all k � 1. Finally, taking k ! 1 in both the sides in (45),

�Jðci; xÞ � J 0ðci; xÞ �
ðAþ Bþ �cDÞ

ð1� �pÞ :
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