IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 6, JUNE 2010

1287

A Novel Bottom Spacer FInFET Structure for
Improved Short-Channel, Power-Delay,
and Thermal Performance

Mayank Shrivastava, Student Member, IEEE, Maryam Shojaei Baghini, Senior Member, IEEE,
Dinesh Kumar Sharma, Senior Member, IEEE, and V. Ramgopal Rao, Senior Member, IEEE

Abstract—For the first time, we propose a novel bottom
spacer fin-shaped field-effect-transistor (FinFET) structure for
logic applications suitable for system-on-chip (SoC) requirements.
The proposed device achieved improved short-channel, power-
delay, and self-heating performance compared with standard
silicon-on-insulator FinFETs. Process aspects of the proposed
device are also discussed in this paper. Physical insight into the
improvement toward the short-channel performance and power
dissipation is given through a detailed 3-D device/mixed-mode
simulation. The self-heating behavior of the proposed device
is compared with standard FinFETs by using detailed electro-
thermal simulations. The proposed device requires an extra
process step but enables smaller electrical width for self-loaded
circuits and is an excellent option for SoC applications.

Index Terms—Bulk fin-shaped field-effect transistor (FinFET),
electrothermal, fin-shaped field-effect transistor (FinFET), self-
heating, short-channel performance, spacer, width quantization.

I. INTRODUCTION

IN-SHAPED field-effect transistors (FinFETSs) are being

considered as preferred devices for the sub-22-nm-node
CMOS technologies [1], [2]. Multigate FinFET devices have
shown excellent scalability and improved logic performance, as
well as improved analog and mixed-signal circuit performance
in sub-32-nm-node CMOS technologies [3]-[5] compared with
planar bulk CMOS transistors. Body-tied or bulk FinFET struc-
tures have also received significant interest from various groups
[6], [7]. Bulk FinFETs are found to have less defect density and
process complexity along with several other advantages such
as better heat dissipation capability and lower cost [7]. Bulk
FinFETs can be fabricated with an extra implant to increase the
doping in the inactive fin region to suppress the source-to-drain
coupling through the substrate [8]. Although the FinFET de-
vices show excellent promise, they still suffer from issues such
as process complexity, additional parasitic capacitances due to

Manuscript received November 2, 2009; revised February 5, 2010; accepted
February 15, 2010. Date of publication April 12, 2010; date of current version
May 19, 2010. The work of M. Shrivastava is supported by an Infineon
Fellowship at the Indian Institute of Technology Bombay. The review of this
paper was arranged by Editor R. Huang.

The authors are with the Center for Nanoelectronics, Department of Elec-
trical Engineering, Indian Institute of Technology Bombay, Mumbai 400076,
India (e-mail: mayank @ee.iitb.ac.in; rrao @ee.iitb.ac.in).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2010.2045686

the nonplanar nature of the structure, and width quantization
effects. Width quantization effect is of particular concern for
analog circuit applications [9]. It is also an important concern
for logic as well as static random-access-memory (SRAM)
applications, where self-loading is dominant. For example,
increasing the active width of the device increases the current
and the load capacitance in the same ratio, thereby making the
delay invariant. The channel width of a single fin device is
restricted by the height of the fin Hi,. The channel width for
a multigate device is given as follows:

W~ 2[_IFin + WFin (1)

where Wy, is the fin width. For a device having Hr;, = 60 nm
and Wiy = 10 nm, the effective channel width can be calcu-
lated [from (1)] as 130 nm. For technologies below the 20-nm
channel length, such a high channel width only increases the
static and dynamic power dissipation (due to the higher cur-
rents) for a given value of delay.

In this paper, for the first time, we propose a novel bottom
spacer (BS) FinFET structure that solves the problem associ-
ated with the width quantization effect. We found significant
improvement in terms of static and dynamic power consump-
tion without compromising on the circuit performance. The
proposed device exhibits a much better short-channel behavior
as compared with the standard FinFET structure, and, hence,
it is better scalable for channel lengths below 20 nm. The
proposed device can be fabricated by using a standard silicon-
on-insulator (SOI) FinFET process along with an extra anti-
punchthrough implant similar to the one used for a bulk FinFET
[8] device. The BS FinFET can also be fabricated in a standard
bulk FinFET process without an extra mask. Although the
device needs an extra process step, it is an excellent option
for system-on-chip (SoC) applications, where a higher channel
width is required for the analog, and a lower channel width
is essential for digital functions. In the BS FinFET, while the
electrical width is decreased, the heat is still dissipated over
the entire fin height and metal gate, which, therefore, reduces
the power density and, hence, self-heating. Relaxed heating
eventually leads to lower Ion degradation.

This paper is organized as follows. Section II explains the
proposed device structure, process steps for the novel BS, and
the associated 3-D simulation setup. Simulation results and
self-heating behavior are presented in Sections III and IV,
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Fig. 1. Proposed device structure. (a) BS FinFET. Inset (b and c) shows the
difference between the fin region of the proposed structure and the standard
FinFET device. Important device dimensions are also listed here.

respectively, while Section V summarizes the important find-
ings from this paper.

II. DEVICE STRUCTURE AND SIMULATION SETUP

Fig. 1(a) illustrates the isometric view of the proposed BS
FinFET structure realized using the Sentaurus Device Editor
[10]. The device structure is similar to the standard FinFET with
an added region, which is called the BS, along both sides of the
fin region. The BS provides isolation to the inactive fin region
from gate contact. The inactive fin under the BS is moderately
p-type doped (5 x 10'®) similar to the inactive region in the
bulk FinFET [8]. In BS FinFETs, the inactive fin region is
isolated from the substrate because of buried oxide (BOX).
This feature improves the substrate noise compared with bulk
FinFETs. The inset in Fig. 1(b) and (c) shows the difference
between the fin region in the standard FinFET and the proposed
structure. The important device dimensions are summarized in
Fig. 1. The proposed process flow to form the BS region along
the fin (as shown in Fig. 2) is explained as follows.

1) Etch silicon (Si) fin over BOX.

2) Isotropic deposition of low-K oxide to form the BS
around the Si fin.

3) Anisotropic etching of BS oxide.

4) Mask Si fin using SizNy. Vertical anti-punchthrough
[P-type for n-channel MOS (NMOS)] implant.

5) Dopant straggle will take place through the BS and
eventually dope the inactive (bottom) Si fin region (P-type
moderate doping for NMOS).

Processing steps for gate stack and S/D formation are similar
to the standard FinFET device as follows: 1) gate oxide forma-
tion (high-K) followed by metal/poly deposition; 2) gate stack
etch followed by SiO- deposition and etching for spacer 1;
3) lightly doped drain implant followed by spacer 2 (SizNy)
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Fig. 2. Proposed process flow to form the BS region along the fin.
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Fig. 3. Calibration of TCAD models for drift diffusion transport with experi-
mental data [2], [14].

formation; 4) epitaxial growth for S/D formation followed by
S/D implant; and 5) silicidation.

The BS height (BSH) defines the active channel width of the
proposed device through the relation

Active channel width = W — 2BSH 2)

where W is the active channel width of the standard FinFET
from (1). The channel length used here is 22 nm, and fin
thickness is kept approximately 10 nm to control the short-
channel effects. The fin is undoped with a doping density of
1 x 10'® cm~3. The intrinsic fin helps in reducing the random
dopant fluctuations [11].

The 3-D device/mixed-mode circuit simulations are per-
formed using Sentaurus Technology Computer Aided Design
(TCAD) tools [12]. TCAD mobility model parameters for
drift-diffusion transport considering quantum correction at the
oxide-silicon channel interfaces were carefully matched with
measured FinFET data [2], [13], [14], as shown in Fig. 3. The
channel in the FinFET is on the sidewall of the fin that lies on

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 04,2022 at 06:03:26 UTC from IEEE Xplore. Restrictions apply.



SHRIVASTAVA et al.: NOVEL BOTTOM-SPACER FinFET STRUCTURE

—=— Standard Fin

1E-6 —=—BSH=30nm
_ ——BSH=40nm
g &S —— BSH=50nm
< 1E-10
i 1E-12
_O
5 30 45 60 75 90
(a)

LG (nm)

—=— Standard Fin

25m ~o-BSH=30nm

'g 2.0m —A—BSH=40nm i 10%] 7
= 1.5m - BSH=50nm = & { —=—Standard Fin
= i 10 ~=—BSH=30nm

% 1.0m =2 4 ——BSH=40nm
- z 10 —=BSH=50nm

5000 = o

(b) 15 30 45 60 75 90 (0)15 30 45 60 75 90
Lg (nm) Lg (nm)

Fig. 4. Intrinsic performance comparison of devices having a different BSH

(i.e., 30, 40, and 50 nm) with respect to the standard FinFET structure. (a) [orr
(amperes per micrometer). (b) Ion (amperes per micrometer). (¢) Ion/IorFr-

the (110) plane if the device is fabricated on a wafer having
orientation (100). Due to dissimilar effective mass values along
various axes, hole mobility in the FinFET gets enhanced, and
electron mobility gets degraded as compared with conventional
planar devices with (100) surface orientation [15]. Sidewall
roughness, stress, and strain also affect the mobility. Since the
default model parameters of the device simulator are for the
(100) plane, mobility model parameters have been modified for
the (110) plane. The values of model parameters were then
extrapolated to 22-nm L devices as described in [16]. The
contact resistivity value chosen for all simulations is 2.4 x
107® Qcm?. A metal gate technology is used, and the threshold
voltages are adjusted by modifying the metal work function
(4.6 eV for the standard FinFET). All internal 3-D parasitic ca-
pacitances of the transistors and the series resistances are taken
into account in the 3-D device/mixed-mode circuit simulations.

Briefly, for devices with a different BSH, we found that
the ON-current /oy per fin is not scaled linearly, while the
OFF-current Iopp per micrometer is suppressed significantly
with respect to the BSH or the active channel width. This is
attributed to the improved short-channel performance of the
devices with a reduced active fin height. The detailed physics
of this improvement is discussed in Section III.

III. SIMULATION RESULTS
A. Intrinsic and Short-Channel Performance

As stated in Section II, the intrinsic and short-channel per-
formance can be improved by reducing the active fin height, as
shown in Fig. 4. Fig. 4(a) shows a significant improvement in
Iorr (at Vps =1 V and Vizg = 0 V) for the reduced height
of the active fin (i.e., BSH = 50 nm) as compared with a
standard FinFET structure. However, Ion (at Vps =1 V and
Vas = 1 V) does not reduce at the same rate as /oy, as shown
in Fig 4(b). Furthermore, Fig. 4(c) compares the Ion/Iorr
ratio of various devices having a different BSH with respect
to the standard FinFET device. For shorter channel lengths,
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Fig. 5. Short-channel performance comparison of devices having a different
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Fig. 6. Electrostatic potential and conduction band energy for a standard
FinFET and devices with different values of the BSH along the channel.

Ion/Iorr is significantly improved for devices with a reduced
active fin height (i.e., BSH = 50 nm).

Fig. 5(a)—(c) shows the improved subthreshold slope, the
Vr roll-off, and the drain-induced barrier lowering (DIBL),
respectively, for the device having BSH = 50 nm as com-
pared with the standard FinFET structure. The reduced Ion
(per micrometer) for the device having BSH = 50 nm is at-
tributed to a higher threshold voltage (~0.45 V) as compared
with the standard FinFET structure.

To clarify how short-channel performance improves as the
BSH increases, variation of the energy barrier between the
source and the channel with the BSH is simulated. Simulation
results (Fig. 6) show that for a given drain voltage, the energy
barrier between the source and the channel increases as the
active fin height reduces with an increasing BSH. This leads to
improved short-channel performance (i.e., Jorr, DIBL, and the
subthreshold slope) in the device having BSH = 50 nm. This
behavior is attributed to the increased influence (control) of the
top gate over the channel. As the BSH increases, the effective
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fin height reduces, which reduces the effective Ion per fin.
Therefore, the optimum value of the BSH is a choice based
on the target performance and the required electrical width
of FinFET devices in self-loaded circuits, i.e., core logic and
SRAM [13] for a given technology.

Devices with a different BSH will have a different BS
thickness value. Therefore, it is worth pointing out at this stage
that because of the higher BS thickness (40-50 nm) value,
the device intrinsic performance and parasitics will not be af-
fected by the tuning of BS thickness for optimum device/circuit
performance.

B. Logic Performance

The proposed BS SOI FinFET not only provides higher
flexibility in fin height sizing but also reduces the overhead of
nonoptimal FinFET sizing for digital circuit applications. As
the effective height of the FinFET reduces, its effective gate
capacitance reduces, and, hence, the FInFET logic gate will be
able to achieve the required delay with less power dissipation.
This assumption is valid as long as the FinFET loading is
not limited by interconnect parasitics or any other height-
independent parasitics. In other words, in many digital modules
on SoC, the device delay is limited by the gate capacitance, and,
hence, significant improvement in dissipated power is expected.
Such improvement is demonstrated by the detail simulations
carried out in this paper.

To study the impact of the BS SOI FinFET on the enhance-
ment of the power-delay characteristic of logic circuits, an
inverter with fan out 1 (driving another inverter) is realized
and simulated. All 3-D parasitics are captured in 3-D mixed
mode circuit simulation. Since BS thickness is much higher
than the effective oxide thickness, the parasitic capacitance of
the BS does not add an overhead to the FinFET footprint or
the main 3-D gate-related capacitances. It is worth mentioning
that various parasitic capacitances of the proposed device are
similar to the parasitic capacitances of the standard FinFET
device as discussed in [13]. To explore the effect of the BSH,
we simulated the transistor with the BSH of 30, 40, and 50 nm,
and compared the circuit performance with that of a standard
FinFET structure. Fig. 7 shows the simulated transient charac-
teristics of various devices with different BSH values compared
with a standard FinFET device. The inset in Fig. 7 provides the
inverter delay for different transistors. The standard FinFETs
result in an inverter delay of 2 ps, whereas the delay increases
up to 3.5 ps for the case of BSH = 50 nm. This is partially
because of the lower ON current Ion as compared with the
standard device and partially because of the 3-D parasitics,
which are not scaled linearly with the scaling of the active
channel width.

Nevertheless, Fig. 8 shows a 2x improvement in power-
delay performance, which is an important figure of merit for
logic circuits. The power is the average of the dynamic power
loss during one switching cycle. This improvement is attributed
to the significant reduction in switching current as shown in the
inset in Fig. 8.

It should be noted that the overhead of the BS on the device
footprint is not significant. This is because 1) the thickness of
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the BS is always less than the minimum available pitch (here,
70 nm), and 2) the BS is required only where a minimum
electrical width is needed, which is the case for single fin
devices.

C. Comparison and Discussion

Furthermore, the short-channel performance and the circuit
performance of the proposed device having a BSH = 50 nm
are compared with respect to the standard FinFET structure,
where the gate metal work function of the proposed device
is adjusted to achieve an identical 1) Vp (i.e., 150 mV) and
2) delay (i.e., 2 ps). The comparison chart is illustrated in
Fig. 9. The figure shows that the proposed device exhibits a 20%
higher inverter delay for the identical V- case, while the other
figures of merit such as the short-channel performance and the
power dissipation improve significantly. The slight loss in the
inverter delay can be attributed to the dominance of the 3-D
device parasitic capacitance. Similarly, the proposed device
shows a significant improvement in terms of dynamic power
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Fig. 9. Short-channel and logic performance comparison of the proposed
device with BSH = 50 nm for different cases (i.e., equal V7 and equal delay)
with respect to the standard FinFET structure.

dissipation and short-channel performance for an equal inverter
delay with respect to a standard FinFET, except for a 1 x higher
static power dissipation.

At this stage, it is worth mentioning that the basic idea of
the BS FinFET is to use it for applications where self-loading
(a circuit that requires minimum width transistors) is dominant.
Hyiy is a parameter that is usually decided prior to fabrication
for a particular application (in most of the cases, SRAM).
The assumption for scaled technologies is that the interconnect
capacitance will dominate for the SRAM compared with the
device’s parasitic capacitance. To address interconnect capac-
itance issues, one usually wants to keep as much as possible
the height of the fin during the technology development phase.
Whereas, in our recent report, we have concluded that even
for SRAMs, the device’s parasitic capacitance dominates over
the interconnect capacitance [13]. This means that for the logic
circuit block having local interconnects and SRAM cells, higher
electrical widths are not required, which can be easily done
by using shorter fins. Whereas, very short fins lead to longer
intrinsic delays because some of the parasitic capacitances do
not scale with the fin height. Furthermore, having very short
fins leads to the requirement of many fingers, where a higher
effective electrical width is needed, i.e., for global intercon-
nect drivers or for most of the analog/RF applications (e.g.,
operational amplifiers, RF power amplifiers, line drivers, etc.).
Hence, when SoC is a concern, a shorter fin will lead to larger
area consumption as compared with a taller fin (higher Hpin)
device.

To address both issues, the BS process is proposed with
the standard FinFET process for SoC applications where
logic/SRAM needs a minimum width (i.e., single fin device)
device [13] and an analog/RF circuit or global interconnect
drivers need devices with higher electrical widths. For the
logic and SRAM circuits, a BS can be used to reduce the
excess electrical width associated with the height of the single
fin and to improve the power-delay product. For analog and
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Fig. 10. Transient input/output characteristics of an inverter driving another
inverter and the dynamic (short circuit) current through the active (i.e., NMOS
or PMOS) device during the inverter switching operation.
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Fig. 11. Transient evolution of temperature across the device. During any
inverter cycle, AT = (Tr — T'a) > 0, where Tz and T'4 are the temperature
rise and the annealed temperature, respectively, during that inverter cycle.

RF applications, the BS can be blocked to achieve a higher
electrical width or multifin structures.

IV. ELECTROTHERMAL BEHAVIOR

Fig. 10 shows the transient input/output characteristics of
an inverter driving another inverter and the dynamic (short-
circuit) current through the active [i.e., NMOS or p-channel
MOS (PMOS)] device during inverter switching operation. The
figure shows that the short-circuit current through the respective
(i.e., NMOS or PMOS) active device is maximum during the
switching operation, which causes a short-circuit power dissi-
pation and eventually leads to joule heating, i.e., temperature
rise across the active device.

Fig. 11 shows that the temperature rise is a function of time.
During the switching operation, when the short-circuit cur-
rent is maximum, the temperature across the device increases.
Whereas, when the input and output pulse stabilizes at Vpp
and Vsg, respectively (and also during switching from Vgg to
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Vbp), the short-circuit current through the active device goes
to a minimum value (Fig. 10). This leads to annealing or a
temperature relaxation.

Fig. 11 shows that during any inverter cycle, AT = (T —
T4) > 0, where T and T4 are the temperature rise and the
annealed temperature, respectively, during that inverter cycle.
Since AT is always greater than 0, a continuous rise in tem-
perature takes place across the device even after 100 pulses
(Fig. 11). Furthermore, Fig. 12 shows that during initial time
periods, the temperature rises across the device, but eventually
saturates to a value Tyax after a few hundreds of thousands
of pulses (a few microseconds for a pulse train with a pulse
width of 14 ps). This means that Tyjax iS a more important
parameter than AT, which leads to device degradation. Tyiax
across the device will depend on the thermal power density
inside the device and the thermal boundary conditions (i.e.,
cooling conditions) around the device. Fig. 12 shows that the
BS FinFET has a lower temperature rise and % Ion degra-
dation as compared with the standard FinFET device. The
increase in temperature leads to higher lattice vibrations and
increased carrier scattering, which adversely affects the car-
rier mobility and eventually degrades the device performance
(i.e., I ON)-

The cause for lower heating in the proposed BS FinFET
as compared with the standard FinFET device is elaborated
in Figs. 13 and 14. Fig. 13(a) shows that the lattice heating
or temperature rise occurs at the drain-to-channel junction,
where the electric field £ and the current density J are both
maximum (AT o [J - Edt). Furthermore, Fig. 13(b) and
(c) shows that maximum heating occurs in the lower part of
the fin (because of higher current density), and the maximum
heat flux is through the metal gate instead of the source/drain
contact. Since the gate oxide has negligible thickness and
since the metals have a good thermal conductivity as compared
with silicon and oxide (BOX), the maximum heat flux occurs
through the metal gate, i.e., the heated fin gets cooled primarily
because of the transfer of heat through the metal gate. Fig. 14
shows that the BS FinFET has heating at the drain-to-body
junction in the active fin region. Since the BS FinFET has a
lower electrical width, it leads to a lower thermal power density
in a given volume (Si fin). Furthermore, the metal gate in both
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Fig. 13. (a) Self-heating behavior across the standard FinFET device. (b) and
(c) Maximum heating occurs in the lower fin region, and the maximum heat
flux (i.e., cooling) is through the metal gate.
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Fig. 14. (a) Self-heating behavior across the proposed BS FinFET device.
(b) and (c¢) Maximum heating occurs in the active fin region. The proposed
device gets better cooling because of lower thermal power density and a similar
volume for heat diffusion.

devices has a similar volume for heat diffusion, and, hence, the
proposed device lowers the thermal issues in FinFETs. This
eventually leads to a lower Tyrax and device degradation Ion
in the proposed device.

V. CONCLUSION

In this paper, we have proposed a solution toward the
problem of width quantization in FinFET technology for SoC
applications. For the first time, we have proposed a novel BS
FinFET structure to achieve improved short-channel perfor-
mance and lower power dissipation. Process aspects of the
proposed device have also been discussed. The proposed device
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can be manufactured in a standard SOI FinFET process with the
addition of an extra implantation step, whereas the same device
can be fabricated in the bulk FinFET process without the need
for even an additional masking step. It has been shown in this
paper that reduction of the active fin height by the proposed
method considerably reduces the static and dynamic power
dissipation, while improving the short-channel performance
significantly. Detailed 3-D simulations give a thorough physical
insight into the tradeoffs involved with this device design in
terms of the delay and the power dissipation. The proposed
structure, because of its additional electrically inactive fin area,
has also been shown to be highly effective in alleviating the
self-heating problems in FinFETs.
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